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Leveraging Implicit Relative Labeling-Importance
Information for Effective Multi-Label Learning
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Abstract —Multi-label learning deals with training examples each represented by a single instance while associated with multiple class
labels, and the task is to train a predictive model which can assign a set of proper labels for the unseen instance. Existing approaches
employ the common assumption of equal labeling-importance, i.e. all associated labels are regarded to be relevant to the training
instance while their relative importance in characterizing its semantics are not differentiated. Nonetheless, this common assumption
does not reflect the fact that the importance degree of each relevant label is generally different, though the importance information is
not directly accessible from the training examples. In this paper, we show that it is beneficial to leverage the implicit relative
labeling-importance (RLI) information to help induce multi-label predictive model with strong generalization performance. Specifically,
RLI degrees are formalized as multinomial distribution over the label space, which can be estimated by either global label propagation
procedure or local k-nearest neighbor reconstruction. Correspondingly, the multi-label predictive model is induced by fitting modeling
outputs with estimated RLI degrees along with multi-label empirical loss regularization. Extensive experiments clearly validate that
leveraging implicit RLI information serves as a favorable strategy to achieve effective multi-label learning.

Index Terms —Machine learning, multi-label learning, relative labeling-importance, label distribution, regularization
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1 INTRODUCTION

Multi-label learning aims to model real-world objects
with rich semantics, where each training example is rep-
resented by a single instance (feature vector) while asso-
ciated with multiple class labels simultaneously [20], [46],
[48]. Formally, let X = Rd be the d-dimensional feature
space and Y = {y1, y2, . . . , yq} be the label space with q
possible class labels. Given the multi-label training set D =
{(xi, Yi) | 1 ≤ i ≤ p}, where xi ∈ X is the d-dimensional
instance and Yi ⊆ Y is the set of relevant labels associated
with xi, the task is to learn a multi-label predictive model
h : X → 2Y from D which can assign a set of proper labels
for the unseen instance. In recent years, multi-label learning
techniques have been widely employed to learn from objects
with rich semantics, such as text [30], image [6], audio [3],
video [37], etc.

It is worth noting that the labeling information for multi-
label training example (xi, Yi) is categorical, i.e. each class
label y ∈ Y is regarded to be either relevant (y ∈ Yi)
or irrelevant (y /∈ Yi) for instance xi. Therefore, existing
approaches learn from multi-label examples by taking the
common assumption of equal labeling-importance, i.e. each
relevant label contributes equally in characterizing seman-
tics of the training example. However, for real-world multi-
label learning problems, the importance degree of each
associated relevant label is different by nature.

For one example, as shown in Fig. 1(a), a natural
scene image may be annotated with labels water, sky, trees
and building simultaneously where their (implicit) relative
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labeling-importance (RLI) for characterizing the semantics of
this image are different due to varying scenery presence.
Nonetheless, those RLI information are not explicitly pro-
vided by the annotator under standard multi-label learning
setting. For another example, as shown in Fig. 1(b), a news
document may be annotated with labels sports, finance and
venue simultaneously where their implicit RLI for charac-
terizing the semantics of this document are different due to
varying topic length.1 Similar scenarios arise for other types
of multi-label data, such as the multiple sentiments associ-
ated with a piece of music would have different emotional
presence [31], the multiple functionalities associated with a
gene would have different expression levels [27], etc.

In general, it is beneficial to make use of the RLI
information for multi-label learning. Specifically, the RLI
information can be exploited as auxiliary supervision in-
formation to facilitate model induction, such as enforcing
that the modeling output on relevant label with higher
RLI degree is expected to be greater than the modeling
output on relevant label with lower RLI degree. Therefore,
the underlying relative importance among relevant labels
should be differentiated, though these RLI information are
not directly accessible from the training examples under
standard multi-label learning setting.

In light of the above observations, we postulate that
effective multi-label learning can be expected if the implicit
RLI information is appropriately leveraged within model in-
duction procedure. Accordingly, a novel multi-label learning
approach named RELIAB, i.e. RElative Labeling-Importance
Aware multi-laBel learning, is proposed. Firstly, the RLI de-
grees are formalized as multinomial distribution over the

1. It is worth noting that the RLI marks given in Fig. 1 apply to a
single object (instance). The alternative multi-label setting where each
object is represented by a bag of instances, i.e. multi-instance multi-label
learning (MIML) [48], [49], is not considered in this paper.
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(a) (Implicit) RLI: water � sky � trees � building

mostly on sports

some on 
finance
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(b) (Implicit) RLI: sports � finance � venue

Fig. 1. Two illustrative objects each associated with multiple class labels simultaneously. The (implicit) relative labeling-importance (RLI) information
are marked in either subfigure, which are not explicitly provided by the annotators under standard multi-label learning setting.

label space, which can be estimated by either invoking
global label propagation procedure or conducting local k-
nearest neighbor reconstruction. After that, the multi-label
predictive model is induced by fitting predictive model with
estimated RLI degrees along with multi-label empirical loss
regularization. Comprehensive experimental studies vali-
date the performance superiority of RELIAB against state-
of-the-art compared algorithms as well as the quality of
estimated RLI degrees.

The rest of this paper is organized as follows. Section 2
presents technical details of the proposed approach. Section
3 discusses existing works related to RELIAB. Section 4
reports experimental results of comparative studies. Finally,
Section 5 concludes and indicates several issues for future
work.

2 THE PROPOSED APPROACH

In this section, we present the RELIAB approach which
aims to learn from multi-label data by exploiting implicit
RLI information. Firstly, the formal definition of RLI degree
is introduced. After that, the two basic stages of RELIAB,
i.e. implicit RLI information estimation and predictive model
induction, are scrutinized respectively.

2.1 RLI Degree

As shown in Section 1, the goal of multi-label learning is
to induce a multi-label predictor h : X → 2Y from the
training set D = {(xi, Yi) | 1 ≤ i ≤ p}. Given any instance
x = [xi1, xi2, . . . , xid]> ∈ X and label yl ∈ Y , we use
μyl
x to denote the implicit RLI degree of yl for characterizing

x. Conceptually, the higher the value of μyl
x , the more

semantics conveyed by yl in characterizing x.
Accordingly, the set of relevant labels for x can be

determined as: Y = {yl | μyl
x > t(x), 1 ≤ l ≤ q},

where t(x) corresponds to the thresholding function which
separates relevant labels from irrelevant ones for instance
x. Specifically, we augment the original label space Y into

Ỹ = Y
⋃
{y0}, where y0 is the complementary virtual label

serving as an artificial bipartition point between relevant
and irrelevant labels [14], [46]. In this case, t(x) can be
set to the thresholding-importance w.r.t. virtual label y0, i.e.
t(x) = μy0

x . Therefore, we have the formal definition on RLI
degree as follows:

Definition. Relative Labeling-Importance (RLI) Degree

Given any instance x ∈ X , the RLI degree of label yl ∈ Ỹ
for x is denoted as μyl

x (0 ≤ l ≤ q), which satisfies the following
constraints:

(i) non-negativity: μyl
x ≥ 0

(ii) normalization:
∑q

l=0 μyl
x = 1

Furthermore, the set of relevant labels Y ⊆ Y for x can be
determined as: Y = {yl | μyl

x > μy0
x , 1 ≤ l ≤ q}.

Here, there are several issues which need to be noticed
for the RLI degree formulation:

a) The RLI degree is not directly accessible from the
multi-label training examples and thus implicit to the learn-
ing algorithm. Consequently, RLI degrees can be viewed
as a refined version of the original categorical (rele-
vant/irrelevant) labeling information and have to be de-
rived from the given multi-label training set.

b) The RLI degree is instance-dependant which cor-
responds to the relative importance among all labels in
characterizing the semantics of one particular instance. For
instance, given two instances {x, z} and two labels {yl, ym},
based on RLI degree we are only modeling and thus inter-
ested in the relative magnitude between μyl

x and μym
x (or

μyl
z and μym

z ), instead of the relative magnitude between μyl
x

and μyl
z (or μym

x and μym
z ).

c) The RLI degree for each instance, i.e. {μyl
x | 0 ≤ l ≤ q},

can be viewed as a label distribution over the augmented
label space Ỹ . For label distribution learning (LDL) [16],
the label distribution information is assumed to be available
for training examples. For multi-label learning, however, the
RLI information needs to be further derived.
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d) Under standard multi-label learning setting, it is as-
sumed that the relevant label set Y for each training instance
x is non-empty (i.e. |Y | ≥ 1) [46], [48]. Therefore, there
would be at least one relevant label yl ∈ Y whose RLI
degree μyl

x is greater than that of the virtual label μy0
x .

2.2 Implicit RLI Degree Estimation

In this paper, two simple yet effective modes are developed
to show the feasibility of deriving RLI degrees from multi-
label training examples. Specifically, to estimate the implicit
RLI degree for all training examples, i.e. U = {μyl

xi
| 1 ≤

i ≤ p, 0 ≤ l ≤ q}, RELIAB employs either the global
label propagation procedure or the local k-nearest neighbor
reconstruction.

2.2.1 Global Label Propagation Procedure

For global style RLI degree estimation, the widely-used
iterative label propagation techniques [47], [51] is adapted
to fulfill the task. Let G = (V,E) denote the fully-connected
graph constructed over the set of training examples with
vertices V = {xi | 1 ≤ i ≤ p}. Accordingly, a p × p
symmetric similarity matrix W = [wij ]p×p is specified for
graph G as follows:

∀p
i,j=1 : wij =






exp
(
−‖xi−xj‖

2
2

2σ2

)
, if i 6= j

0 , if i = j
(1)

In this paper, the width parameter σ > 0 for similarity
calculation is set to be 1.

Correspondingly, the similarity matrix is utilized to con-
struct label propagation matrix P = D− 1

2 WD− 1
2 . Here,

D = diag[d1, d2, . . . , dp] is a diagonal matrix with its di-
agonal entry di equal to the sum of the i-th row of W:
di =

∑p
j=1 wij . Furthermore, let F = [fil]p×(q+1) be an

p × (q + 1) matrix with non-negative entries. Here, each
entry fil ≥ 0 is assumed to be proportional to the RLI degree
μyl
xi

. Based on the multi-label training set, an initial matrix
F(0) = Φ = [φil]p×(q+1) is instantiated as follows:

∀p
i=1 ∀q

l=0 : φil =






τ, if yl = y0

1, if yl ∈ Yi

0, otherwise

(2)

Here, τ ∈ (0, 1) corresponds to the parameter of initial
thresholding-importance for virtual label y0. As shown in
Eq.(2), at the initialization step, the relevant (irrelevant)
labels are assumed to have unit (zero) labeling-importance.
At the t-th iteration, F is updated by propagating labeling-
importance information according to the label propagation
matrix P:

F(t) = αPF(t−1) + (1 − α)Φ (3)

Here, α ∈ (0, 1) corresponds to the parameter which
balances the fraction of information inherited from label
propagation (i.e. PF(t−1)) and initial labeling (i.e. Φ).

By applying Eq.(3) recursively with F(0) = Φ, it is not
difficult to show that:

F(t) = (αP)tΦ + (1 − α)
t−1∑

i=0

(αP)iΦ (4)

As a real symmetric matrix, the label propagation matrix
P can be diagonalized as P = C>ΛC, where C is an or-
thonormal matrix and Λ = diag[λ1, λ2, . . . , λp] is a diagonal
matrix containing eigenvalues of P. Note that P is similar
to S = D− 1

2 PD
1
2 = D−1W, and therefore P and S share

identical eigenvalues.
Specifically, S is a stochastic matrix whose rows consist

of non-negative entries and sum to one. According to the
Perron-Frobenius theorem [25], [51], the absolute value of
each eigenvalue of S satisfies |λi| ≤ 1. Under the setting of
α ∈ (0, 1), the limit for the first term of Eq.(4) would be:

lim
t→∞

(αP)tΦ = lim
t→∞

αt ∙
(
C>ΛC

)t
Φ

= lim
t→∞

αt ∙ C>ΛtC Φ

= 0 (5)

It also holds that lim
t→∞

t−1∑

i=0
(αP)i = (I − αP)−1 because:

(I − αP) lim
t→∞

t−1∑

i=0

(αP)i = lim
t→∞

(I − αP)
t−1∑

i=0

(αP)i

= lim
t→∞

(
I − (αP)t

)

= I

Thus, the limit for the second term of Eq.(4) would be:

lim
t→∞

(1 − α)
t−1∑

i=0

(αP)iΦ = (1 − α)(I − αP)−1Φ (6)

By combining Eqs.(5) and (6), the label propagation pro-
cedure of Eq.(4) will converge to F∗ as the number of
iterations grow to infinity:

F∗ = (1 − α)(I − αP)−1Φ (7)

Thereafter, the implicit RLI degree for each label given a
training example xi is estimated by normalizing F∗ on each
row:

∀p
i=1 ∀q

l=0 : μyl
xi

=
f∗

il∑q
k=0 f∗

ik

(8)

In other words, the RLI degrees for each instance xi, i.e.
{μyl
xi

| 0 ≤ l ≤ q}, can be regarded as a multinomial
distribution over the augmented label space Ỹ .

2.2.2 Local k-Nearest Neighbor Reconstruction

Other than the label propagation procedure which makes
use of global relationship among all instances, another sim-
ple yet effective mode is proposed to deriving the implicit
RLI degree in a local manner. Specifically, the popular k-
nearest neighbor techniques are adapted to fulfill the task
which have been widely used in solving multi-label learning
problems [8], [36], [45].

For each multi-label training example (xi, Yi), let yi =
(yi0, yi1, . . . , yiq)> denote the (q + 1)-dimensional binary
labeling vector w.r.t. the augmented label space Ỹ :

∀q
l=0 : yil =






τ, if yl = y0

1, if yl ∈ Yi

0, if yl /∈ Yi

(9)
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Furthermore, let N(xi) = {i1, i2, . . . , ik} denote the index
set for the k nearest neighbors of xi identified in D. Accord-
ingly, let Xi = [xi1 , xi2 , . . . , xik

] be the d× k matrix storing
all the nearest neighbors of xi, and Yi = [yi1 , yi2 , . . . , yik

]
be the (q + 1) × k matrix storing all the corresponding
labeling vectors.

To estimate the RLI degrees for xi, RELIAB models the
local relationship among xi and its k nearest neighbors
by linear least squares reconstruction: minβi ||xi − Xiβi||2.
Here, βi corresponds to the reconstruction coefficients. Gen-
erally, k � d holds and thus βi can be solved as:

βi =
(
X>

i Xi

)−1
X>

i xi (10)

After that, a nonnegative confidence vector gi =
[gi0, gi1, . . . , giq]> is set as:

gi = (ρyi + (1 − ρ)Yiβi)+ (11)

Here, ρ corresponds to the parameter which balances the
fraction of labeling information inherited from the instance
itself (i.e. yi) and the k nearest neighbors (i.e. Yi). Further-
more, (∙)+ is the thresholding operator which turns negative
entries of each vector into zero values.

Thereafter, the implicit RLI degrees for xi are estimated
by normalizing gi:

∀q
l=0 : μyl

xi
=

gil∑q
k=0 gik

(12)

Similarly, the estimated RLI degrees can be regarded as a
multinomial distribution over the augmented label space Ỹ .

2.3 Predictive Model Induction

In the second stage, RELIAB aims to induce the multi-label
predictive model by leveraging the estimated RLI informa-
tion, i.e. U = {μyl

xi
| 1 ≤ i ≤ p, 0 ≤ l ≤ q}. To enable

exploitation of U , we employ maximum entropy model [10]
to parametrize the multi-label predictor:

∀q
l=0 : f(yl | x,Θ) =

1
Z(x)

exp
(
θ>

l x
)

(13)

Here, Θ =
[
θ0, θ1, . . . , θq

]
represents q + 1 set of model

parameters and θl = [θl1, θl2, . . . , θld]> is the d-dimensional
parameter vector for the l-th label yl ∈ Ỹ . Furthermore,
the partition function Z(x) =

∑q
l=0 exp(θ>

l x) serves as a
normalization term to ensure distributional outputs over
Ỹ , i.e.

∑q
l=0 f(yl | x,Θ) = 1. In this case, the multi-label

predictor h can be derived from f by thresholding the
outputs against the virtual label y0:

h(x) = {yl | f(yl | x,Θ) > f(y0 | x,Θ), 1 ≤ l ≤ q} (14)

To induce the parametric model f , RELIAB chooses to
optimize the following objective function:

V (f,U ,D) = Vdis(f,U) + λ ∙ Vemp(f,D) (15)

Here, the first term Vdis(f,U) considers how well the para-
metric model f fits the estimated RLI information U , while
the second term Vemp(f,D) is used as a regularizer which
considers how well f classifies the multi-label training ex-
amples in D.

For the first term, Vdis(f,U) can be measured by the
compatibility between the importance-based distribution, i.e.
{μyl
x | 0 ≤ l ≤ q}, and the model-based distribution,

i.e. {f(yl | x,Θ) | 0 ≤ l ≤ q}. Here, the canonical
Kullback-Leibler (KL) divergence is employed to measure
the compatibility:

Vdis(f,U)

=
p∑

i=1

KL
(
{μyl
xi

| 0 ≤ l ≤ q}, {f(yl | xi,Θ) | 0 ≤ l ≤ q}
)

=
p∑

i=1

q∑

l=0

(

μyl
xi

ln
μyl
xi

f(yl | xi,Θ)

)

(16)

For the second term, Vemp(f,D) can be measured by the
empirical loss of the parametric model f on D. As shown in
Eq.(14), by taking the virtual label y0 as the bipartition point,
its modeling output f(y0 | xi,Θ) should be less than those
of relevant labels in Yi while larger than those of irrelevant
labels in Y i (i.e. Y \ Yi). Accordingly, the second term of
Eq.(15) is instantiated as:

Vemp(f,D)

= −
p∑

i=1




∑

yj∈Yi

(
f(yj | xi,Θ) − f(y0 | xi,Θ)

)

+ri ∙
∑

yk∈Y i

(
f(y0 | xi,Θ) − f(yk | xi,Θ)

)


 (17)

Here, ri = |Yi|/|Y i| is used to account for potential imbal-
ance between the number of relevant and irrelevant labels
associated with each example [43]. Note that minimizing
the loss in Eq.(17) can be viewed as minimizing one of
the most popular multi-label metrics, namely the ranking
loss [15], [20], [32], [46], which considers pairwise ranking
between each relevant-irrelevant label pair. Nonetheless, by
incorporating the virtual label y0, the number of pairwise
relationships to be considered can be reduced from O(q2)
for traditional ranking loss to O(q) for the loss in Eq.(17).

By substituting Eqs.(16) and (17) into the objective func-
tion and ignoring constant terms, Eq.(15) can then be rewrit-
ten as:

V (f,U ,D) = −
p∑

i=1

q∑

l=0

(
μyl
xi

ln f(yl | xi,Θ)
)

−λ ∙
p∑

i=1




∑

yj∈Yi

(
f(yj | xi,Θ) − f(y0 | xi,Θ)

)

+ri ∙
∑

yk∈Y i

(
f(y0 | xi,Θ) − f(yk | xi,Θ)

)


 (18)

By minimizing Eq.(18), the final predictive model is
obtained as: f∗ = arg minf V (f,U ,D). To solve this uncon-
strained nonlinear optimization problem, RELIAB employs
the Limited-memory Broyde-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm which is particularly suited for problems with
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large number of variables [26]. As a quasi-Newton algo-
rithm, L-BFGS iteratively optimizes the objective function
with resort to gradient of the function:

∂V

∂Θ
=
[

∂V

∂θ0
, ∙ ∙ ∙ ,

∂V

∂θl
, ∙ ∙ ∙ ,

∂V

∂θq

]

, where

∂V

∂θl
= −

p∑

i=1

( (
μyl
xi

− f(yl | xi,Θ)
)
∙ xi

)
− β ∙

p∑

i=1(

f(yl | xi,Θ)
( ∑

yj∈Yi\{yl}

(
f(y0 | xi,Θ) − f(yj | xi,Θ)

)

+ri ∙
∑

yk∈Y i\{yl}

(
f(yk | xi,Θ) − f(y0 | xi,Θ)

)

+ζ(yl, Yi)
(
1 − f(yl | xi,Θ) + f(y0 | xi,Θ)

))

∙ xi

)

(19)

Here, ζ(yl, Yi) returns 0 if yl = y0. Otherwise, ζ(yl, Yi)
returns +1 if yl ∈ Yi and −ri if yl ∈ Y i.

Table 1 summarizes the complete procedure of the pro-
posed RELIAB approach. After incorporating the virtual
label y0 into the original label space (Step 1), the implicit RLI
degrees are estimated by employing either the global label
propagation procedure (Steps 3-6) or the local k-nearest
neighbor reconstruction (Steps 8-13). Then, the multi-label
predictive model is learned by leveraging the estimated RLI
information (Steps 15-23). Finally, the predicted label set for
unseen instance is determined by thresholding the modeling
outputs against the virtual label (Step 24).

2.4 Remarks

The RELIAB approach proposed in this paper serves as
an initial attempt towards leveraging RLI information for
learning from multi-label data. There are a few points which
are noteworthy for the particular implementation employed
by RELIAB:

a) In terms of implicit RLI degree estimation (Subsection
2.2), RELIAB relies on either the global spectral techniques
of label propagation or the local similarity techniques of
k-nearest neighbors. For iterative label propagation, it is
originally designed for dealing with single-label examples
[47], [51] while further adapted to fit multi-label scenario
by introducing initial thresholding-importance (Eq.(2)) and
normalization (Eq.(8)) to the confidence matrix F. For k-
nearest neighbors, it has been utilized to develop multi-label
predictive model [8], [36], [45] while further adapted to help
derive RLI degree via linear least squares reconstruction
(Eq.(10)) and weighted aggregation (Eq.(11)).

b) The iterative label propagation procedure works in
a global manner where the RLI degrees of each multi-label
training example are estimated by synergizing information
from all the other training examples. On the other hand, the
k-nearest neighbor reconstruction works in a local manner
where the RLI degrees of each multi-label training example
are estimated by utilizing information from neighboring
training examples. Conceptually, the former strategy has the
advantage of exploiting structural information in the global
feature space while may be misled by outlier examples.
On the other hand, the latter strategy has the advantage
of bearing the robustness of kNN estimation while may be
less optimal without considering global information.

TABLE 1
The pseudo-code of RELIAB.

Inputs:
D: multi-label training set {(xi, Yi) | 1 ≤ i ≤ p}

(xi ∈ X , Yi ⊆ Y ,X = Rd,Y = {y1, y2, . . . , yq})
mode: mode (global or local) for RLI information estimation
τ : initial thresholding-importance parameter τ ∈ (0, 1)

α: balancing parameter α ∈ (0, 1) for global mode
k, ρ: number of nearest neighbors k and balancing

parameter ρ ∈ (0, 1) for local mode
λ: regularization parameter for the objective function
x: unseen instance (x ∈ X )

Outputs:
Y : predicted label set for x

Process:

1: Augment the original label space by introducing the virtual
label y0: Ỹ = {y0}

⋃
Y ;

2: if mode = global then
3: Construct the similarity matrix W = [wij ]p×p according

to Eq.(1);
4: Construct the initial labeling-importance matrix Φ =

[φil]p×(q+1) according to Eq.(2);
5: Conduct label propagation to yield the converged solu-

tion F∗ according to Eq.(7);
6: Estimate the implicit RLI degrees {μyl

xi | 1 ≤ i ≤ p, 0 ≤
l ≤ q} according to Eq.(8);

7: else
8: for i = 1 to p do
9: Identify the k nearest neighbors of xi in D and form

the neighbors matrix Xi and the labeling matrix Yi;
10: Obtain the reconstruction coefficients βi according to

Eq.(10);
11: Set the confidence vector gi according to Eq.(11);
12: Estimate the implicit RLI degrees {μyl

xi | 0 ≤ l ≤ q}
according to Eq.(12);

13: end for
14: end if
15: Initialize model parameters Θ(0) = 1

d(q+1)
∙ 1d×(q+1);

16: Set t = 0;
17: repeat
18: Evaluate f(yl | xi,Θ

(t)) (1 ≤ i ≤ p, 0 ≤ l ≤ q) according
to Eq.(13);

19: Evaluate gradient ∂V
∂Θ |

Θ(t)
according to Eq.(19);

20: Update Θ(t+1) by running one L-BFGS iteration [26] with
current parameters Θ(t) and gradient ∂V

∂Θ |
Θ(t)

;
21: t = t + 1;
22: until convergence

23: Set the final prediction model f∗ with Θ∗ = Θ(t);
24: Return Y = h(x) according to Eq.(14).

c) Intuitively, for either global label propagation pro-
cedure or local k-nearest neighbor reconstruction, the RLI
information is estimated based on the smoothness assumption
that examples close in feature space tend to share similar
semantics in the label space. For instance, given multi-label
examples (x, {y2, y3, y4}), (x′, {y2, y4}) and (x′′, {y1, y2}),
where x is close to x′ and x′′ in the feature space. Then, it
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is reasonable to estimate the following order of RLI for x:
y2 � y4 � y3, as y2, y4 and y3 are shared by decreasing
number of examples in {x′, x′′}. By exploiting the under-
lying relationships among training examples, the estimated
RLI information serves as beneficial impetus for effective
multi-label learning.

d) As shown in Table 1, parameters of the predictive
model are optimized by invoking the iterative L-BFGS pro-
cedure (Steps 17-22). Here, the iterative procedure converges
if the L-BFGS stopping criterion ||g||

max(1,||Θ||) < ε (g: projected
gradient; ε = 0.001) is met or the maximum number of
iterations (80) is reached. Let t represent the resulting num-
ber of L-BFGS iterations, the training complexity for RELIAB

corresponds to O(p3 ∙ (q + 1) + t ∙ d ∙ (q + 1)) for global mode
and O(p ∙d ∙ (p+(q +1) ∙k ∙d)+ t ∙d ∙ (q +1)) for local mode.
The testing complexity for either mode is O(d ∙ (q + 1)).

e) Multi-label learning can be regarded as one specific
instantiation of the general multi-output (or multi-target)
prediction framework where each label can be assigned
numerical or categorical values [1], [38], [46]. In this paper,
the estimated RLI degrees are incorporated into training
procedure based on the maximum entropy model. Alter-
natively, those RLI information can also be coupled with
existing multi-output learning techniques [1], [38] for model
induction. Nonetheless, it is worth noting that in multi-
output learning the numerical labeling information are gen-
erally assumed to be readily available from the training
examples, while in multi-label learning the RLI information
are implicit and need to be estimated from the training
examples.

3 RELATED WORK

Existing works related to RELIAB are briefly discussed in
this section, while comprehensive reviews on multi-label
learning can be found in recent surveys [20], [32], [44], [46].

Based on the order of label correlations being considered,
most approaches to multi-label learning can be roughly
grouped into three categories, i.e. first-order approaches
assuming independence among class labels [2], [44], [45],
second-order approaches considering pairwise correlations
between class labels [13], [14], [21], and high-order ap-
proaches considering correlations among label subsets or
all class labels [5], [29], [33]. For whichever order of cor-
relations, the common modeling strategy is to treat each
label categorically, i.e. being either relevant or irrelevant for
an instance without differentiating its relative importance.
In contrast, RELIAB models high-order label correlations by
differentiating degrees of RLI over the label space.

There have been some works which learn from multi-
label data with auxiliary labeling-importance information.
In [4], [7], an ordinal scale is assumed to characterize the
membership degree and an ordinal grade is assigned for
each label of the training example. In [40], a full ordering is
assumed to be known to rank relevant labels of the training
example. In both cases, those auxiliary labeling-importance
information are explicitly given and thus accessible to the
learning algorithm. However, RELIAB differs from them
fundamentally without assuming the availability of such
explicit information.

The principle of maximum entropy (MaxEnt) has been
employed to design multi-label learning algorithms, which
works by modeling p(y | x), i.e. the joint probabilities of
all labels y = (y1, y2, . . . , yq) ∈ {−1, +1}q conditioned on
the instance x [19], [50]. Due to the combinatorial nature of
y, existing MaxEnt-based multi-label learning approaches
can not scale well to data set with large number of la-
bels. In contrast, the MaxEnt model employed by RELIAB

(Eq.(13)) corresponds to a multinomial distribution instead
of a joint distribution over the label space. This property
makes RELIAB scalable for data sets with large number of
labels, whose experimental results are reported in the next
section.

4 EXPERIMENTS

In this section, extensive comparative studies on the pro-
posed RELIAB approach and other state-of-the-art multi-
label learning algorithms are conducted. Firstly, experi-
mental setup including data sets, compared algorithms
and evaluation metrics are introduced. Secondly, detailed
experimental results are reported with statistical perfor-
mance comparisons. Thirdly, properties of the proposed
approaches are further investigated.

In terms of implicit RLI degree estimation, the RELIAB

approach instantiated with global label propagation proce-
dure or local k-nearest neighbor reconstruction are denoted
as RELIAB-LP or RELIAB-KNN respectively.

4.1 Experimental Setup

4.1.1 Data Sets
To thoroughly evaluate the performance of compared algo-
rithms, a total of seventeen benchmark multi-label data sets
are employed for experimental studies.2 For each multi-label
data set S = {(xi, Yi) | 1 ≤ i ≤ r}, we use |S|, dim(S),
L(S) and F (S) to represent its number of examples, number
of features, total number of class labels and feature type respec-
tively. Properties of the data set can be further characterized
by several multi-label statistics, including label cardinality
LCard(S), label density LDen(S), distinct label sets DL(S)
and proportion of distinct label sets, whose definitions can
be found in PDL(S) [29], [46]:

Table 2 summarizes detailed characteristics of the ex-
perimental data sets used in this paper. Here, data sets are
organized in ascending order of |S|, with nine of them being
regular-scale (first part, |S| < 5, 000) and eight of them
being large-scale (second part, |S| ≥ 5, 000). As shown in
Table 2, the seventeen data sets cover a broad range of cases
with diversified multi-label properties and thus serve as a
solid basis for thorough comparative studies.

4.1.2 Evaluation Metrics
Given the multi-label data set S = {(xi, Yi) | 1 ≤ i ≤ r},
let h : X → 2Y be the multi-label predictive model and
{f1, f2, . . . , fq} be the corresponding set of q real-valued
functions with each fl : X → R (1 ≤ l ≤ q) determining
the relevancy of class label yl. As per the ranking nature
of the maximum entropy model employed by RELIAB, four

2. Publicly available at http://mulan.sourceforge.net/datasets.html
and http://meka.sourceforge.net/#datasets
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TABLE 2
Characteristics of the benchmark multi-label data sets.

Data set |S| dim(S) L(S) F (S) LCard(S) LDen(S) DL(S) PDL(S) Domain

cal500 502 68 174 numeric 26.044 0.150 502 1.000 audio
emotions 593 72 6 numeric 1.868 0.311 27 0.046 audio
medical 978 1,449 45 nominal 1.245 0.028 94 0.096 text

llog 1,460 1,004 75 nominal 1.180 0.016 304 0.208 text
msra 1,868 898 19 numeric 6.315 0.332 947 0.507 image

image 2,000 294 5 numeric 1.236 0.247 20 0.010 image
scene 2.407 294 5 numeric 1.074 0.179 15 0.006 image
yeast 2.417 103 14 numeric 4.237 0.303 198 0.082 biology

slashdot 3,782 1,079 22 nominal 1.181 0.054 156 0.041 text

corel5k 5,000 499 374 nominal 3.522 0.009 3,175 0.635 image
rcv1-s1 6,000 500 101 nominal 2.880 0.029 1,028 0.171 text
rcv1-s2 6,000 500 101 nominal 2.634 0.026 954 0.159 text
rcv1-s3 6,000 500 101 nominal 2.614 0.026 939 0.156 text
rcv1-s4 6,000 500 101 nominal 2.484 0.025 816 0.136 text
rcv1-s5 6,000 500 101 nominal 2.642 0.026 946 0.158 text
bibtex 7,395 1836 159 nominal 2.402 0.015 2,856 0.386 text

mediamill 43,907 120 101 numeric 4.376 0.043 6,555 0.149 video

popular ranking-based multi-label metrics are used for per-
formance evaluation [20], [46], [48]:

• One-error: 1
r

∑r
i=1[[[arg maxyl∈Y fl(xi)] /∈ Yi]]

Here, [[a]] returns 1 if a holds and 0 otherwise.

• Coverage: 1
q

(
1
r

∑r
i=1 maxyl∈Yi rank(xi, yl) − 1

)

Here, rank(xi, yl) =
∑q

j=1[[fj(xi) ≥ fl(xi)]]

• Ranking loss: 1
r

∑r
i=1

|Zi|
|Yi||Ȳi|

Here, Zi = {(yl, yj) | fl(xi) ≤ fj(xi), (yl, yj) ∈ Yi ×
Ȳi} and Ȳi = Y \ Yi

• Average precision: 1
r

∑r
i=1

1
|Yi|

∑
yl∈Yi

R(xi,yl)
rank(xi,yl)

Here, R(xi, yl) = {yj | fj(xi) ≥ fl(xi), yj ∈ Yi}

Furthermore, two classification-based multi-label metrics
are also used in this paper:

• Macro-averaging F1: 1
q

∑q
l=1

2∙TPl

2∙TPl+FNl+FPl

Here, TPl = |{xi | yl ∈ Yi ∧ yl ∈ h(xi), 1 ≤ i ≤ r}|
FPl = |{xi | yl /∈ Yi ∧ yl ∈ h(xi), 1 ≤ i ≤ r}|
FNl = |{xi | yl ∈ Yi ∧ yl /∈ h(xi), 1 ≤ i ≤ r}|

• Micro-averaging F1:
∑q

l=1 2∙TPl∑q
l=1(2∙TPl+FNl+FPl)

Conceptually, one-error considers examples whose top-
ranked label is not a relevant label, coverage considers how
many steps should be moved along the ranked label list
to cover all relevant labels, ranking loss considers the pair
of relevant-irrelevant labels which have been reversely or-
dered, and average precision considers the average fraction
of relevant labels ranked higher than a particular relevant
label. Furthermore, macro-averaging F1 and micro-averaging
F1 evaluates the averaged F1 value by assuming “equal
weights” for labels and examples respectively. The values
for all evaluation metrics are normalized between [0,1],
where we have the smaller the values the better the perfor-
mance for one-error, coverage and ranking loss, and the larger
the values the better the performance for other three metrics.

It is worth noting that there are some other multi-
label metrics which can be used for performance eval-
uation while the corresponding results are not reported
here due to limited space. Furthermore, compared to other

classification-based metrics such as hamming loss, zero-one
loss and accuracy, the employed macro-/micro-averaging F1
is more sensitive to the inherent class-imbalance property of
multi-label data [9], [28], [43]. For ranking-based metrics, in
case of prediction ties among class labels, it is also desirable
to consider using partial ranking loss which allows consistent
convex surrogate loss function [15].

4.1.3 Compared Algorithms

In this paper, the performance of RELIAB-LP and RELIAB-
KNN are compared against four well-established multi-label
learning algorithms which have been widely employed for
comparative studies in multi-label learning [20], [32], [44],
[46]:

• Binary relevance (BR) [2]: A first-order approach which
decomposes the multi-label learning problem into
q independent binary classification problems, where
each of them corresponds to one possible class label
in Y .

• Calibrated label ranking (CLR) [14]: A second-order ap-
proach which transforms the multi-label learning
problem into a label ranking problem, where a to-
tal of

(q
2

)
binary classifiers are trained to yield the

ranking among labels and further bi-partitioned via
threshold calibration.

• Ensembles of classifier chains (ECC) [29]: A high-order
approach which transforms the multi-label learning
problem into a chain of binary classification prob-
lems, where predictions of preceding binary classi-
fiers are used as extra features to build subsequent
ones in the chain. Furthermore, ensemble learning
is employed to address the randomness of chaining
order.

• Random k-labelsets (RAKEL) [33]: A high-order ap-
proach which transforms the multi-label learning
problem into an ensemble of multi-class classification
problems, where each component learner in the en-
semble is induced by applying label powerset tech-
niques [46] on a random k-labelset in Y .



8

TABLE 3
Predictive performance of each compared algorithm (mean±std. deviation) on the nine regular-scale data sets. The best and second best

performance among all the compared algorithms are shown in • and ◦ respectively.

Compared One-error ↓

algorithm cal500 emotions medical llog msra image scene yeast slashdot

RELIAB-LP 0.122±0.049 • 0.277±0.036 0.141±0.030 • 0.746±0.030 • 0.061±0.016 • 0.329±0.035 • 0.262±0.032 ◦ 0.238±0.018 ◦ 0.518±0.025
RELIAB-KNN 0.122±0.046 • 0.246±0.035 ◦ 0.143±0.033 ◦ 0.767±0.042 ◦ 0.063±0.021 ◦ 0.335±0.025 ◦ 0.257±0.030 • 0.237±0.016 • 0.495±0.018 ◦

BR 0.900±0.036 0.298±0.045 0.324±0.054 0.893±0.023 0.324±0.023 0.379±0.017 0.374±0.032 0.250±0.020 0.668±0.029
CLR 0.269±0.061 0.322±0.032 0.360±0.170 0.830±0.058 0.144±0.027 0.437±0.019 0.344±0.027 0.241±0.012 0.979±0.005
ECC 0.253±0.052 ◦ 0.310±0.036 0.182±0.040 0.818±0.015 0.178±0.030 0.411±0.031 0.327±0.038 0.245±0.016 0.490±0.030 •

RAKEL 0.611±0.084 0.315±0.074 0.246±0.038 0.879±0.026 0.239±0.031 0.412±0.029 0.339±0.027 0.280±0.016 0.615±0.020
RANK-SVM 0.189±0.024 0.244±0.031 • 0.385±0.032 0.892±0.018 0.163±0.023 0.395±0.021 0.348±0.032 0.262±0.021 0.430±0.021

GFM 0.487±0.076 0.284±0.065 0.534±0.056 0.896±0.051 0.274±0.045 0.472±0.039 0.371±0.042 0.288±0.041 0.668±0.034

Compared Coverage ↓

algorithm cal500 emotions medical llog msra image scene yeast slashdot

RELIAB-LP 0.743±0.019 • 0.299±0.029 0.044±0.014 ◦ 0.162±0.021 ◦ 0.536±0.012 ◦ 0.196±0.016 ◦ 0.106±0.014 ◦ 0.458±0.005 • 0.134±0.007 •
RELIAB-KNN 0.746±0.019 ◦ 0.284±0.032 ◦ 0.036±0.012 • 0.156±0.018 • 0.532±0.012 • 0.193±0.014 • 0.105±0.014 • 0.459±0.008 ◦ 0.135±0.007 ◦

BR 0.786±0.014 0.306±0.024 0.111±0.027 0.376±0.028 0.694±0.015 0.218±0.016 0.182±0.019 0.470±0.008 0.246±0.010
CLR 0.795±0.008 0.334±0.020 0.080±0.068 0.186±0.044 0.618±0.013 0.247±0.016 0.137±0.017 0.480±0.008 0.258±0.009
ECC 0.794±0.017 0.314±0.015 0.054±0.015 0.189±0.020 0.634±0.012 0.238±0.022 0.145±0.018 0.469±0.008 0.138±0.009

RAKEL 0.964±0.006 0.348±0.021 0.089±0.019 0.340±0.023 0.670±0.010 0.253±0.009 0.174±0.015 0.564±0.008 0.218±0.012
RANK-SVM 0.743±0.013 • 0.279±0.024 • 0.047±0.020 0.187±0.033 0.599±0.031 0.229±0.008 0.111±0.012 0.479±0.012 0.174±0.016

GFM 0.884±0.065 0.342±0.031 0.112±0.029 0.321±0.024 0.637±0.046 0.278±0.012 0.153±0.028 0.582±0.033 0.252±0.022

Compared Ranking loss ↓

algorithm cal500 emotions medical llog msra image scene yeast slashdot

RELIAB-LP 0.176±0.004 • 0.161±0.031 0.028±0.010 ◦ 0.129±0.019 ◦ 0.127±0.005 ◦ 0.177±0.018 ◦ 0.089±0.015 ◦ 0.177±0.008 ◦ 0.118±0.007 •
RELIAB-KNN 0.178±0.005 ◦ 0.145±0.032 ◦ 0.023±0.009 • 0.123±0.017 • 0.125±0.006 • 0.173±0.016 • 0.088±0.014 • 0.174±0.008 • 0.119±0.008 ◦

BR 0.233±0.008 0.173±0.025 0.089±0.021 0.328±0.030 0.254±0.009 0.205±0.017 0.163±0.018 0.183±0.006 0.225±0.012
CLR 0.224±0.008 0.199±0.024 0.065±0.059 0.152±0.039 0.190±0.009 0.243±0.018 0.119±0.016 0.187±0.005 0.245±0.010
ECC 0.219±0.008 0.184±0.018 0.038±0.013 0.153±0.019 0.209±0.010 0.230±0.027 0.127±0.016 0.186±0.006 0.122±0.009

RAKEL 0.364±0.014 0.217±0.026 0.067±0.015 0.292±0.028 0.232±0.011 0.250±0.012 0.154±0.014 0.250±0.005 0.198±0.013
RANK-SVM 0.184±0.015 0.142±0.021 • 0.036±0.014 0.212±0.016 0.178±0.014 0.217±0.034 0.115±0.054 0.186±0.009 0.152±0.010

GFM 0.210±0.041 0.188±0.019 0.078±0.026 0.276±0.021 0.246±0.023 0.249±0.046 0.137±0.029 0.194±0.008 0.174±0.009

Compared Average precision ↑

algorithm cal500 emotions medical llog msra image scene yeast slashdot

RELIAB-LP 0.513±0.017 • 0.797±0.028 0.889±0.020 • 0.392±0.034 • 0.823±0.009 ◦ 0.785±0.019 • 0.844±0.020 ◦ 0.749±0.012 ◦ 0.607±0.017
RELIAB-KNN 0.512±0.020 ◦ 0.815±0.027 0.889±0.021 • 0.377±0.040 ◦ 0.826±0.010 • 0.785±0.015 • 0.847±0.019 • 0.754±0.011 • 0.628±0.015

BR 0.343±0.017 0.785±0.025 0.748±0.039 0.207±0.024 0.660±0.010 0.756±0.011 0.763±0.021 0.747±0.010 0.473±0.018
CLR 0.436±0.019 0.762±0.024 0.687±0.192 0.295±0.075 0.741±0.013 0.718±0.014 0.795±0.018 0.745±0.008 0.261±0.006
ECC 0.443±0.020 0.777±0.022 0.860±0.028 ◦ 0.314±0.017 0.717±0.011 0.733±0.021 0.798±0.023 0.747±0.008 0.621±0.021

RAKEL 0.332±0.019 0.766±0.031 0.802±0.027 0.233±0.026 0.694±0.014 0.725±0.013 0.780±0.018 0.710±0.009 0.516±0.012
RANK-SVM 0.481±0.029 0.817±0.021 ◦ 0.733±0.021 0.245±0.043 0.759±0.024 0.743±0.012 0.793±0.021 0.741±0.028 0.652±0.012 ◦

GFM 0.510±0.017 0.822±0.044 • 0.712±0.042 0.344±0.016 0.812±0.032 0.775±0.030 ◦ 0.841±0.017 0.742±0.023 0.667±0.025 •

Compared Macro-averaging F1 ↑

algorithm cal500 emotions medical llog msra image scene yeast slashdot

RELIAB-LP 0.297±0.021 • 0.650±0.039 0.722±0.061 • 0.397±0.057 0.558±0.013 0.604±0.016 ◦ 0.677±0.021 ◦ 0.409±0.019 0.417±0.036 ◦
RELIAB-KNN 0.284±0.023 0.671±0.045 ◦ 0.702±0.051 0.420±0.058 ◦ 0.567±0.014 ◦ 0.602±0.020 0.670±0.016 0.418±0.022 0.375±0.079

BR 0.166±0.017 0.613±0.039 0.622±0.066 0.271±0.029 0.488±0.016 0.549±0.016 0.610±0.024 0.391±0.015 0.359±0.032
CLR 0.211±0.025 0.601±0.038 0.600±0.129 0.395±0.062 0.499±0.017 0.525±0.022 0.620±0.025 0.400±0.018 0.165±0.035
ECC 0.231±0.024 0.615±0.046 0.706±0.061 0.398±0.057 0.487±0.018 0.531±0.020 0.643±0.027 0.397±0.013 0.416±0.047

RAKEL 0.187±0.020 0.618±0.036 0.672±0.058 0.366±0.051 0.492±0.020 0.540±0.012 0.644±0.019 0.430±0.014 ◦ 0.363±0.033
RANK-SVM 0.233±0.012 0.601±0.017 0.666±0.018 0.369±0.023 0.491±0.013 0.529±0.036 0.633±0.011 0.393±0.048 0.302±0.026

GFM 0.291±0.025 ◦ 0.680±0.031 • 0.707±0.021 ◦ 0.431±0.060 • 0.586±0.021 • 0.610±0.024 • 0.715±0.057 • 0.446±0.024 • 0.570±0.054 •

Compared Micro-averaging F1 ↑

algorithm cal500 emotions medical llog msra image scene yeast slashdot

RELIAB-LP 0.480±0.010 ◦ 0.647±0.036 0.722±0.024 0.191±0.043 0.717±0.007 0.603±0.017 ◦ 0.663±0.022 ◦ 0.642±0.011 0.437±0.016
RELIAB-KNN 0.482±0.015 • 0.680±0.042 ◦ 0.776±0.020 ◦ 0.248±0.031 ◦ 0.723±0.008 ◦ 0.602±0.020 0.657±0.017 0.653±0.010 ◦ 0.431±0.014

BR 0.341±0.019 0.632±0.038 0.616±0.046 0.134±0.013 0.588±0.014 0.549±0.014 0.608±0.025 0.626±0.010 0.330±0.013
CLR 0.326±0.019 0.614±0.037 0.598±0.157 0.176±0.049 0.624±0.010 0.525±0.019 0.612±0.026 0.628±0.012 0.008±0.003
ECC 0.357±0.020 0.632±0.041 0.752±0.030 0.151±0.029 0.614±0.013 0.532±0.017 0.637±0.029 0.635±0.009 0.438±0.021 ◦

RAKEL 0.355±0.018 0.634±0.031 0.685±0.031 0.148±0.027 0.613±0.015 0.540±0.011 0.636±0.023 0.632±0.009 0.362±0.014
RANK-SVM 0.388±0.025 0.622±0.038 0.683±0.024 0.153±0.020 0.604±0.016 0.516±0.023 0.611±0.012 0.601±0.010 0.338±0.044

GFM 0.480±0.012 ◦ 0.697±0.024 • 0.801±0.015 • 0.267±0.033 • 0.746±0.031 • 0.607±0.031 • 0.693±0.025 • 0.667±0.008 • 0.549±0.054 •

As shown in Eq.(13), the parametric predictor employed
by RELIAB can also be viewed as multinomial logistic re-
gression models. Accordingly, each of the four compared
algorithms are implemented under the MULAN multi-label
learning package [34] where their base learners are instanti-
ated with logistic regression models. Furthermore, parame-
ters suggested in corresponding literatures are used for ECC

and RAKEL (ECC: ensemble size 30; RAKEL: ensemble size
2q with k = 3). For RELIAB, the initial threshold-importance
parameter τ and the regularization parameter λ are chosen
among {0.1, 0.15, . . . , 0.5} and {10−3, 10−2, 10−1, 0, 1, 10}

via cross-validation on training set.3 In addition, for RELIAB-
LP, the balancing parameter α is fixed to be 0.5. For RELIAB-
KNN, the number of nearest neighbors k is fixed to be 10 and
30 for regular-scale and large-scale data sets respectively, the
balancing parameter ρ is fixed to be 0.3.

Note that RELIAB makes uses of the virtual label y0

(Eq.(14)) to help partition the ranked labels into relevant
and irrelevant label set, which has been widely-used in

3. Here, τ and λ are tuned via cross-validation on the training
partition for each fold of the main ten-fold cross-validation experiment.
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TABLE 4
Predictive performance of each compared algorithm (mean±std. deviation) on the eight large-scale data sets. The best and second best

performance among all the compared algorithms are shown in • and ◦ respectively.

Compared One-error ↓

algorithm corel5k rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5 bibtex mediamill

RELIAB-LP 0.718±0.018 • 0.458±0.019 ◦ 0.468±0.011 ◦ 0.475±0.028 ◦ 0.455±0.020 ◦ 0.464±0.009 0.396±0.015 • 0.191±0.009
RELIAB-KNN 0.788±0.011 0.496±0.025 0.463±0.011 • 0.462±0.028 • 0.453±0.019 • 0.460±0.018 • 0.406±0.031 ◦ 0.187±0.010

BR 0.925±0.009 0.723±0.020 0.728±0.025 0.740±0.015 0.728±0.015 0.748±0.013 0.856±0.012 0.159±0.007
CLR 0.741±0.018 0.501±0.027 0.507±0.019 0.533±0.037 0.499±0.017 0.503±0.018 0.470±0.028 0.146±0.007 •
ECC 0.732±0.022 ◦ 0.453±0.022 • 0.478±0.017 0.480±0.020 0.459±0.021 0.461±0.018 ◦ 0.466±0.019 0.149±0.009 ◦

RAKEL 0.872±0.014 0.623±0.023 0.592±0.022 0.598±0.018 0.592±0.013 0.595±0.021 0.675±0.015 0.193±0.008
RANK-SVM 0.791±0.027 0.510±0.013 0.604±0.022 0.532±0.016 0.498±0.010 0.532±0.029 0.489±0.020 0.183±0.009

GFM 0.803±0.021 0.568±0.019 0.688±0.026 0.612±0.013 0.652±0.018 0.611±0.024 0.639±0.011 0.199±0.010

Compared Coverage ↓

algorithm corel5k rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5 bibtex mediamill
RELIAB-LP 0.296±0.012 ◦ 0.135±0.009 0.122±0.006 0.124±0.007 0.110±0.010 0.117±0.007 0.097±0.004 • 0.195±0.003

RELIAB-KNN 0.336±0.019 0.110±0.008 • 0.102±0.006 • 0.104±0.005 • 0.088±0.010 • 0.100±0.006 • 0.108±0.009 ◦ 0.194±0.004
BR 0.682±0.015 0.371±0.015 0.337±0.020 0.330±0.019 0.299±0.014 0.325±0.011 0.404±0.014 0.129±0.002 ◦

CLR 0.287±0.015 • 0.112±0.008 ◦ 0.105±0.006 ◦ 0.114±0.024 ◦ 0.095±0.007 ◦ 0.107±0.006 ◦ 0.115±0.006 0.121±0.001 •
ECC 0.434±0.017 0.166±0.009 0.152±0.008 0.152±0.005 0.130±0.012 0.149±0.008 0.224±0.007 0.151±0.010

RAKEL 0.874±0.012 0.417±0.012 0.359±0.022 0.369±0.014 0.358±0.020 0.363±0.015 0.352±0.015 0.504±0.004
RANK-SVM 0.338±0.014 0.142±0.021 0.297±0.013 0.298±0.013 0.256±0.012 0.344±0.014 0.296±0.017 0.358±0.013

GFM 0.442±0.016 0.230±0.022 0.311±0.018 0.310±0.015 0.286±0.014 0.367±0.024 0.291±0.012 0.379±0.017

Compared Ranking loss ↓

algorithm corel5k rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5 bibtex mediamill
RELIAB-LP 0.128±0.005 • 0.057±0.004 0.050±0.003 0.052±0.002 ◦ 0.045±0.004 0.047±0.003 0.052±0.003 • 0.057±0.001

RELIAB-KNN 0.143±0.009 0.047±0.003 • 0.041±0.002 • 0.043±0.002 • 0.036±0.004 • 0.040±0.002 • 0.059±0.007 ◦ 0.055±0.001
BR 0.349±0.009 0.172±0.007 0.167±0.009 0.168±0.009 0.150±0.007 0.157±0.005 0.256±0.011 0.034±0.001 ◦

CLR 0.131±0.008 ◦ 0.048±0.002 ◦ 0.046±0.002 ◦ 0.054±0.020 0.044±0.002 ◦ 0.046±0.003 0.066±0.003 0.031±0.001 •
ECC 0.191±0.009 0.071±0.003 0.068±0.003 0.069±0.002 0.059±0.005 0.065±0.004 0.126±0.005 0.041±0.003

RAKEL 0.586±0.011 0.233±0.007 0.209±0.012 0.222±0.009 0.224±0.013 0.209±0.012 0.211±0.010 0.190±0.001
RANK-SVM 0.144±0.009 0.067±0.008 0.101±0.022 0.095±0.014 0.054±0.018 0.044±0.014 ◦ 0.065±0.012 0.059±0.002

GFM 0.289±0.014 0.145±0.010 0.211±0.011 0.193±0.010 0.201±0.015 0.215±0.013 0.254±0.012 0.203±0.014

Compared Average precision ↑

algorithm corel5k rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5 bibtex mediamill
RELIAB-LP 0.271±0.011 • 0.569±0.012 ◦ 0.592±0.009 ◦ 0.588±0.014 ◦ 0.617±0.011 ◦ 0.596±0.009 ◦ 0.592±0.013 • 0.678±0.006

RELIAB-KNN 0.247±0.010 0.574±0.016 • 0.626±0.008 • 0.626±0.016 • 0.648±0.011 • 0.622±0.008 • 0.574±0.021 ◦ 0.688±0.003
BR 0.137±0.005 0.377±0.012 0.386±0.014 0.385±0.011 0.402±0.010 0.384±0.008 0.216±0.007 0.749±0.004

CLR 0.247±0.009 0.564±0.012 0.579±0.011 0.554±0.050 0.589±0.013 0.576±0.012 0.515±0.018 0.764±0.003 •
ECC 0.241±0.011 0.559±0.012 0.579±0.009 0.574±0.011 0.599±0.015 0.582±0.009 0.464±0.012 0.755±0.004 ◦

RAKEL 0.120±0.007 0.391±0.009 0.429±0.010 0.423±0.010 0.431±0.011 0.421±0.012 0.333±0.016 0.575±0.004
RANK-SVM 0.228±0.007 0.489±0.021 0.469±0.023 0.498±0.017 0.433±0.021 0.502±0.011 0.482±0.018 0.598±0.009

GFM 0.267±0.010 ◦ 0.568±0.015 0.580±0.016 0.582±0.015 0.602±0.015 0.591±0.012 0.556±0.020 0.650±0.014

Compared Macro-averaging F1 ↑

algorithm corel5k rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5 bibtex mediamill
RELIAB-LP 0.304±0.024 ◦ 0.325±0.025 ◦ 0.340±0.022 0.336±0.022 ◦ 0.352±0.028 ◦ 0.346±0.017 ◦ 0.294±0.019 ◦ 0.075±0.006

RELIAB-KNN 0.296±0.019 0.316±0.022 0.343±0.027 ◦ 0.334±0.018 0.348±0.030 0.341±0.015 0.254±0.014 0.039±0.006
BR 0.214±0.011 0.241±0.023 0.222±0.018 0.232±0.017 0.252±0.016 0.226±0.011 0.144±0.005 0.204±0.007

CLR 0.276±0.015 0.278±0.028 0.269±0.016 0.255±0.035 0.297±0.023 0.286±0.013 0.288±0.010 0.177±0.008
ECC 0.284±0.017 0.283±0.030 0.265±0.021 0.248±0.018 0.298±0.033 0.273±0.020 0.266±0.016 0.168±0.009

RAKEL 0.257±0.013 0.266±0.029 0.237±0.024 0.243±0.023 0.256±0.020 0.255±0.016 0.217±0.007 0.212±0.008 ◦
RANK-SVM 0.278±0.016 0.262±0.024 0.278±0.011 0.252±0.022 0.276±0.024 0.284±0.012 0.269±0.019 0.156±0.004

GFM 0.365±0.027 • 0.387±0.015 • 0.366±0.018 • 0.376±0.013 • 0.360±0.021 • 0.391±0.019 • 0.321±0.012 • 0.233±0.010 •

Compared Micro-averaging F1 ↑

algorithm corel5k rcv1subset1 rcv1subset2 rcv1subset3 rcv1subset4 rcv1subset5 bibtex mediamill

RELIAB-LP 0.230±0.011 ◦ 0.390±0.007 0.432±0.008 0.429±0.012 0.428±0.012 0.434±0.012 0.402±0.016 ◦ 0.368±0.007
RELIAB-KNN 0.195±0.012 0.412±0.013 ◦ 0.476±0.014 • 0.477±0.010 • 0.471±0.017 • 0.473±0.015 • 0.379±0.019 0.516±0.004

BR 0.122±0.007 0.322±0.009 0.317±0.008 0.318±0.009 0.326±0.011 0.323±0.007 0.158±0.004 0.578±0.004
CLR 0.123±0.019 0.361±0.008 0.356±0.015 0.338±0.029 0.365±0.017 0.368±0.014 0.326±0.008 0.585±0.003
ECC 0.091±0.015 0.381±0.016 0.384±0.014 0.374±0.014 0.411±0.017 0.402±0.009 0.375±0.017 0.602±0.014 ◦

RAKEL 0.135±0.009 0.341±0.008 0.337±0.008 0.335±0.012 0.349±0.010 0.350±0.010 0.202±0.008 0.579±0.004
RANK-SVM 0.151±0.013 0.320±0.019 0.334±0.043 0.389±0.021 0.389±0.017 0.407±0.011 0.378±0.013 0.587±0.012

GFM 0.289±0.024 • 0.489±0.023 • 0.453±0.030 ◦ 0.460±0.016 ◦ 0.467±0.013 ◦ 0.470±0.015 ◦ 0.439±0.017 • 0.621±0.022 •

ranking-based multi-label classification [14], [39]. In addi-
tion to CLR, another well-established multi-label learning
algorithm RANK-SVM [13], [46] is employed for comparative
studies which directly optimizes the ranking loss metric.
Furthermore, other than the four ranking-based metrics, two
classification-based metrics macro-averaging F1 and micro-
averaging F1 are also used for performance evaluation in
this paper. In addition to BR and ECC which optimize
classification-based metrics, the GFM approach [11] is also
employed as the compared algorithm which is one of the
representative algorithms which are tailored to maximize

F-measure [11], [24], [28], [35].
For each compared algorithm, ten-fold cross-validation

is performed on the nine regular-scale data sets (first part
of Table 2) as well as the eight large-scale data sets (second
part of Table 2). Accordingly, on each data set, the mean
metric value as well as the standard deviation are recorded
for comparative studies.

4.2 Experimental Results

Tables 3 and 4 report the detailed experimental results of
all compared algorithms on the regular-scale and large-
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(a) One-error (b) Coverage (c) Ranking loss

(d) Average precision (e) Macro-averaging F1 (f) Micro-averaging F1

Fig. 2. Comparison of RELIAB-LP (control algorithm) against other compared algorithms with the Bonferroni-Dunn test. Algorithms not connected
with RELIAB-LP in the CD diagram are considered to have significantly different performance from the control algorithm (CD=1.9546 at 0.05
significance level).

(a) One-error (b) Coverage (c) Ranking loss

(d) Average precision (e) Macro-averaging F1 (f) Micro-averaging F1

Fig. 3. Comparison of RELIAB-KNN (control algorithm) against other compared algorithms with the Bonferroni-Dunn test. Algorithms not connected
with RELIAB-KNN in the CD diagram are considered to have significantly different performance from the control algorithm (CD=1.9546 at 0.05
significance level).

scale data sets respectively. For each evaluation metric, “↓”
indicates “the smaller the better” while “↑” indicates “the
larger the better”.

To analyze the relative performance among the com-
pared algorithms systematically, Friedman test [12] is used
here which is regarded as the favorable statistical test for
comparisons among multiple algorithms over a number of
data sets. At 0.05 significance level, the Friedman statistics
FF (FF > 65 on all evaluation metrics) is greater than the
critical value 2.0924 (#compared algorithms n = 8; #data
sets N = 17). Therefore, the null hypothesis of “equal”
performance among the compared algorithms is clearly
rejected.

To show the relative performance among the compared
algorithms, Bonferroni-Dunn test [12] is employed as the
post-hoc test by treating RELIAB-LP or RELIAB-KNN as the
control algorithm. Here, the difference between the average
ranks of control algorithm and one compared algorithm is
calibrated with the critical difference (CD). The performance
between control algorithm and one compared algorithm is
deemed to be significantly different if their average ranks
differ by at least one CD (CD=1.9546 with n = 7 and
N = 17).

Figs. 2 and 3 illustrate the CD diagrams [12] on each
evaluation metric by treating RELIAB-LP or RELIAB-KNN as

the control algorithm respectively. Here, the average rank
of each compared algorithm is marked along the axis with
lower ranks to the right. In each subfigure, any compared
algorithm whose average rank is within one CD to that of
the control algorithm is interconnected to each other with a
thick line. Otherwise, it is considered to have significantly
different performance against the control algorithm.

The following observations can be made based on the
reported experimental results:

1) On regular-scale data sets (Table 3), across all the
evaluation metrics, RELIAB-LP ranks 1st in 29.6%
cases and ranks 2nd in 40.7% cases while RELIAB-
KNN ranks 1st in 37.0% cases and ranks 2nd in 42.6%
cases. On large-scale data sets (Table 4), across all the
evaluation metrics, RELIAB-LP ranks 1st in 14.6%
cases and ranks 2nd in 39.6% cases while RELIAB-
KNN ranks 1st in 47.9% cases and ranks 2nd in 12.5%
cases.

2) Both RELIAB-LP and RELIAB-KNN achieve optimal
(lowest) average rank in terms of one-error, coverage,
ranking loss and average precision (Fig. 2(a)-(d), Fig.
3(a)-(d)), and significantly outperform BR on all
evaluation metrics. Furthermore, RELIAB-KNN sig-
nificantly outperforms CLR on all evaluation met-
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TABLE 5
Quantitative analysis on the quality of estimated RLI information. On each data set, the relative ranking of compared algorithms in terms of each

metric is shown in parenthesis.

Data Set
Kullback-Leibler Divergence ↓ Squared χ2 ↓ Fidelity ↑

RELIAB-LP RELIAB-KNN RANDOM AVERAGE RELIAB-LP RELIAB-KNN RANDOM AVERAGE RELIAB-LP RELIAB-KNN RANDOM AVERAGE

SBU 3DFE 0.2550 (2) 0.0796 (1) 8.9651 (4) 8.9580 (3) 0.2151 (2) 0.0764 (1) 0.9546 (4) 0.9484 (3) 0.9425 (2) 0.9805 (1) 0.3721 (4) 0.3739 (3)
SJAFFE 0.1787 (2) 0.0684 (1) 7.1037 (4) 7.0740 (3) 0.1574 (2) 0.0661 (1) 0.9447 (4) 0.9165 (3) 0.9586 (2) 0.9832 (1) 0.5901 (4) 0.5984 (3)

Natural Scene 0.4836 (1) 1.0237 (2) 2.9763 (4) 2.8763 (3) 0.4385 (3) 0.3153 (1) 0.4534 (4) 0.3814 (2) 0.8327 (3) 0.8831 (1) 0.8191 (4) 0.8396 (2)
Movie 0.2400 (1) 0.2618 (2) 4.6749 (4) 4.5798 (3) 0.1715 (1) 0.2148 (2) 0.6204 (4) 0.5425 (3) 0.9517 (1) 0.9406 (2) 0.7370 (4) 0.7589 (3)

Human Gene 0.1572 (1) 0.3024 (2) 4.5798 (4) 3.6307 (3) 0.1380 (1) 0.2330 (2) 0.5425 (3) 0.5970 (4) 0.9628 (1) 0.9327 (2) 0.7589 (3) 0.7476 (4)

rics.
3) Both RELIAB-LP and RELIAB-KNN are comparable

to RANK-SVM in terms of ranking loss (Fig. 2(c),
Fig. 3(c)) and achieve superior performance against
RANK-SVM on the other evaluation metrics. Specifi-
cally, the comparable performance between the two
variants of RELIAB and RANK-SVM on ranking loss
is noticeable, as RANK-SVM is designed to learn
from multi-label data by optimizing this particular
evaluation metric [13], [46].

4) RELIAB-LP is comparable to ECC in terms of one-
error (Fig. 2(a)) and micro-averaging F1 (Fig. 2(f)),
while RELIAB-KNN is comparable to ECC in terms
of one-error (Fig. 3(a)) and macro-averaging F1 (Fig.
3(e)). On all the other cases, both variants of RE-
LIAB achieve superior performance against ECC. It
is worth noting that ensemble learning techniques
have been utilized by ECC to improve generaliza-
tion performance, where the number of base learn-
ers employed by ECC is M -times larger than those
employed by RELIAB (as specified in Subsection
4.1.3, ensemble size M for ECC is set to be 30 in
this paper).

5) Both RELIAB-LP and RELIAB-KNN are comparable
to GFM in terms of macro-averaging F1 and micro-
averaging F1 (Fig. 2(e)-(f), Fig. 3(e)-(f)), though their
average ranks are higher than that of GFM. It is also
worth noting that GFM is designed to learn from
multi-label data by optimizing the F-measure [11],
[46].

4.3 Algorithmic Properties

4.3.1 Quality of Estimated RLI Information
In addition to effectiveness of the proposed approach, an-
other important issue regarding RELIAB lies in the quality
of the estimated RLI information, i.e. how the RLI degrees
derived from multi-label training examples coincide with
the ground-truth RLI information.

To this end, other than those benchmark data sets used
in Subsection 4.1.1 where the ground-truth RLI information
is not available, we have tried to collect five multi-label
data sets with known ground-truth RLI information for
quantitative analysis:

• SBU 3DFE: This is a 3D facial expression database
[41], where each facial expression can be associated
with emotions such as happiness, sadness, surprise,
fear, anger and disgust. A total of 23 students are
asked to annotate the level of emotion intensity (1

to 5) for each facial expression, where their averaged
annotation intensities are used to yield the ground-
truth RLI degrees. The resulting data set contains
2,500 examples with 243 features and 6 class labels.

• SJAFFE: This is a Japanese female facial expression
database [23], where each facial expression can be as-
sociated with the same set of emotions as SBU 3DFE.
Similarly, a total of 60 persons annotate the level
of emotion intensity and their averaged annotation
intensities are used to yield the ground-truth RLI
degrees. The resulting data set contains 213 examples
with 243 features and 6 class labels.

• Natural Scene: This is a natural scene image data set
[18], where each image can be associated with scenes
such as plant, sky, cloud, snow, building, desert, moun-
tain, water, and sun. A total of 10 persons rank the
relevant labels for each image, where their rankings
are consolidated to yield the ground-truth RLI de-
grees. The resulting data set contains 2,000 examples
with 294 features and 9 class labels.

• Movie: This is a movie pre-release ratings data set
[17], where each movie can be associated with rating
scales from 1 to 5 stars. A total of 54,242,292 ratings
from 478,656 users over 7,755 movies are crawled
from Netflix, where each movie has 6,994 ratings on
average and the rating distributions are used to yield
the ground-truth RLI degrees. The resulting data set
contains 7,755 examples with 1869 features and 5
class labels.

• Human Gene: This is a human gene data set [42],
where each gene can be associated with 68 kinds of
possible diseases. The gene expression level for each
disease is used to yield the ground-truth RLI degrees.
The resulting data set contains 30,542 examples with
36 features and 68 class labels.

For each multi-label data set S = {(xi, Yi) | 1 ≤
i ≤ r}, let μyl

xi
and ηyl

xi
be the estimated and ground-

truth RLI degree respectively. In this subsection, three pop-
ular measures are employed to quantify the quality of
RLI information estimated by RELIAB:4 a) Kullback-Leibler

Divergence: dKL =
∑r

i=1

∑q
l=1 μyl

xi
ln

μ
yl
xi

η
yl
xi

; b) Squared χ2:

dχ2 =
∑r

i=1

∑q
l=1

(μ
yl
xi

−η
yl
xi)

2

μ
yl
xi

+η
yl
xi

; c) Fidelity: dF =
∑r

i=1

∑q
l=1√

μyl
xi ∙ η

yl
xi . For dKL and dχ2 , the smaller the values the

better the performance. For dF , the larger the values the
better the performance.

4. In this case, the RLI information estimation procedure of RELIAB-
LP and RELIAB-KNN are invoked without introducing the virtual label.
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(a) Ranking loss

(b) Micro-averaging F1

Fig. 4. Performance comparison among RELIAB-LP, RELIAB-KNN and RELIAB-VAN in terms of ranking loss and micro-averaging F1.

TABLE 6
Wilcoxon signed-ranks test for RELIAB against its variant

RELIAB-nonREG in terms of each evaluation metric (at 0.05
significance level; p-values shown in the brackets).

Evaluation metric
RELIAB against RELIAB-nonReg

mode: global mode: local
One-error win [p=4.88e-4] win [p=4.90e-3]
Coverage tie [p=6.52e-2] tie [p=7.11e-1]
Ranking loss win [p=3.40e-3] tie [p=7.50e-1]
Average precision win [p=2.44e-4] win [p=2.34e-2]
Macro-averaging F1 win [p=3.58e-2] win [p=3.40e-3]
Micro-averaging F1 tie [p=9.85e-1] win [p=2.27e-2]

Table 5 reports the detailed metric values of each al-
gorithm on the five multi-label data sets, which measure
the quality of estimated RLI degrees w.r.t. the ground-truth
ones. Due to the lack of multi-label learning algorithms
which can also yield RLI degrees estimation, two baseline
algorithms are utilized for comparative studies: a) RANDOM

which assigns RLI degree randomly to relevant labels of
each example; b) AVERAGE which assigns RLI degree uni-
formly (i.e. 1

|Yi|
) to relevant labels of each example.

As shown in Table 5, only on the Natural Scene data
set, RELIAB-LP has slightly worse estimation quality than
AVERAGE in terms of Squared χ2 and Fidelity. On all the
other cases, the estimation quality of both RELIAB-LP and
RELIAB-KNN significantly outperform RANDOM and AVER-
AGE. These results indicate that the two variants of RELIAB

have good capability in recovering ground-truth RLI infor-
mation, which would lead to their favorable generalization
performance as reported in Subsection 4.2.

4.3.2 Usefulness of Regularization

As shown in Eq.(15), the parametric model is learned by
fitting the estimated RLI degrees as regularized with multi-
label empirical loss. Other than the estimated RLI degrees
which serve as informative resource for designing the first
term Vdis(f,U), we show the helpfulness of regularization
by considering a simplified version of RELIAB. Here, the
regularization term Vemp(f,D) in Eq.(15) is dropped from

TABLE 7
Wilcoxon signed-ranks test for RELIAB against its variant RELIAB-VAN
in terms of each evaluation metric (at 0.05 significance level; p-values

shown in the brackets).

Evaluation metric
RELIAB against RELIAB-VAN

mode: global mode: local
One-error win [p=2.03e-2] win [p=1.33e-3]
Coverage win [p=4.17e-2] win [p=1.98e-2]
Ranking loss win [p=4.66e-2] win [p=9.70e-4]
Average precision win [p=2.60e-2] win [p=7.10e-4]
Macro-averaging F1 win [p=8.60e-3] win [p=8.83e-2]
Micro-averaging F1 win [p=9.88e-3] win [p=2.92e-4]

the objective function and the resulting version is denoted
as RELIAB-nonREG.

Following the same evaluation protocol of Subsection
4.1.2, the performance of RELIAB-nonREG is investigated
as well. For brevity, detailed experimental results of RE-
LIAB-nonREG are not reported here. Nonetheless, to show
whether RELIAB performs significantly better than its sim-
plified version, the Wilcoxon signed-ranks test [12] is used
which is a desirable statistical test for comparisons between
two algorithms over a number of data sets. Table 6 sum-
marizes the statistical test results at 0.05 significance level,
where the p-values for the corresponding tests are also
shown in the brackets.

As shown in Table 6, whether the global label propa-
gation mode or the local k-nearest neighbor mode is uti-
lized for implicit RLI degree estimation, RELIAB achieves
superior or at least comparable performance to RELIAB-
nonREG across all evaluation metrics. These results clearly
validate the usefulness of empirical loss regularization term
for improving generalization performance.

4.3.3 Usefulness of Exploiting RLI Information

The RLI information leveraged by RELIAB is not explicit
prior knowledge but needs to be estimated from the training
examples. To show whether RELIAB can truly exploit the
estimated RLI information to our advantage, a vanilla vari-
ant of RELIAB (termed as RELIAB-VAN) is employed here
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which returns equal RLI degree over all class labels in the
first stage and follows the same procedure of RELIAB in the
second stage for model induction.

Fig. 4 illustrates the performance of RELIAB-LP, RELIAB-
KNN and RELIAB-VAN in terms of two evaluation met-
rics due to limited space. As shown in Table 7, based on
Wilcoxon signed-ranks tests at 0.05 significance level, both
RELIAB-LP and RELIAB-KNN achieve significantly better
performance against RELIAB-VAN in terms of all evaluation
metrics. These results indicate that RELIAB would be ap-
propriate for problems where the relevant labels associated
with multi-label examples have inherent relative labeling-
importance.

5 CONCLUSION

Existing approaches learn from multi-label examples by
assuming equal labeling-importance, where each relevant
label contributes equally to the learning procedure. In this
paper, an extension to our earlier research [22] is presented
which works by leveraging the implicit RLI information
derived from the training examples for model induction. Ac-
cordingly, two simple yet effective strategies are developed
for estimating RLI degrees, which are further leveraged
to induce multi-label predictive model with empirical loss
regularization. Comparative studies validate the quality of
RLI information estimated by the proposed approach as
well as the benefits of leveraging them for effective multi-
label learning.

In the future, other than the label propagation and k-
nearest neighbor techniques, it is interesting to explore other
ways for implicit RLI information estimation. It is also
interesting to further investigate the quality of RLI degrees
estimated by RELIAB on data sets with ground-truth RLI
information over higher number of class labels.
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[8] W. Cheng and E. Hüllermeier, “Combining instance-based learn-
ing and logistic regression for multilabel classification,” Machine
Learning, vol. 76, no. 2-3, pp. 211–225, 2009.

[9] Z. A. Daniels and D. N. Metaxas, “Addressing imbalance in
multi-label classification using structured Hellinger forests,” in
Proceedings of the 31st AAAI Conference on Artificial Intelligence, San
Francisco, CA, 2017, pp. 1826–1832.

[10] S. Della Pietra, V. Della Pietra, and J. Lafferty, “Inducing features of
random fields,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 4, pp. 380–393, 1997.
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