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Abstract— Partial multi-label learning (PML) aims to learn a
multilabel predictive model from the PML training examples,
each of which is associated with a set of candidate labels where
only a subset is valid. The common strategy to induce a predictive
model is identifying the valid labels in each candidate label set.
Nonetheless, this strategy ignores considering the essential label
distribution corresponding to each instance as label distributions
are not explicitly available in the training dataset. In this article,
a novel partial multilabel learning method is proposed to recover
the latent label distribution and progressively enhance it for
+= predictive model induction. Specifically, the label distribution
is_recovered by considering the observation model for logical
= labels and the sharing topological structure from feature space
to label distribution space. Besides, the latent label distribution is
progressively enhanced by recovering latent labeling information
and supervising predictive model training alternatively to make
the label distribution appropriate for the induced predictive
model. Experimental results on PML datasets clearly validate
the effectiveness of the proposed method for solving partial
multilabel learning problems. In addition, further experiments
show the high quality of the recovered label distributions and the
effectiveness of adopting label distributions for partial multilabel
learning.
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Index Terms—Label distribution, label distribution learning
(LDL), label enhancement (LE), partial multilabel learning.

I. INTRODUCTION

ARTIAL multilabel learning (PML) aims to learn a

multilabel predictive model from inaccurate supervised
data, among which each training example is associated with
a candidate label set that is partially valid. For example,
in online object tagging (Fig. 1), only a subset of the candidate
labels is valid due to the unreliable or irresponsible annotators.
In recent years, partial multilabel learning techniques have
been widely adopted in real-world applications with inaccurate
supervision [1]-[6].
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Fig. 1. In object annotation, only three of the candidate labels are valid ones
(in red) including house, mountain, and tree.

Formally, let X = R? denote the g-dimensional feature FHIE
space and YV = {y|, y2, ..., ¥.} denote the output space with fciET_]

¢ possible class labels. Given the partial multilabel learning ZI/{7
training set D = {(x;,Y;) | 1 < i < n}, the task of &=

partial multilabel learning is inducing a multilabel predlctlve
model f : X + 2¥ from the training set. Here, x;

denotes a g-dimensional feature vector and Y¥; € Y is the
candidate label set corresponding to each x;. Partial multilabel
learning takes the key assumption that the ground-truth labels
Y; corresponding to x; exist in its candidate label set ¥;, that
is, 17, C ¥;, and therefore cannot be directly accessed by the
common learning approach. Intuitively, the basic strategy for
coping with the PML problem is disambiguation, that is, iden-
tifying the valid labels in each candidate label set. One recent
attempt is utilizing the confidence degree of each candidate
label to be the valid one [6]. Nonetheless, as the confidence
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ignores the irrelevance of the non-candidate labels, it CO"'ldIOW rank
be error-prone especially with a label set that contains a h1gh—:[L 5
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proportion of false-positive labels. The low-rank assumption is
adopted to identify the noisy labels for disambiguation [4], [5]*
For credible label elicitation techniques, the valid labels are]j
identified from the candidate ones to make final prediction on
unseen instance [1], [2]. Noisy label identification is proposed
to simultaneously recover the ground-truth label and identify
the noisy labels [7].

In order to handle the ambiguity in partial multilabel
learning, we assume that there is a real-valued description
degree d;/ associated with each label y;. Here, the vector d; =
[dil.di?,....di]" constituted by the description degrees of
all the labels is called label distribution [8)]. Note that label
distribution may be the essential labeling information for PML,
which describes the label ambiguity in each example more
comprehensively in mainly two aspects.
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Fig. 2. Example about the differentiation between candidate labels and
noncandidate labels in PML.
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n than identical. For instance, in Fig. 2, the image is
annotated with the relevant label set {Jacket, DownCoat,
8 Shirt}, but the relevance of each label to the image is
significantly different.
The boundary between relevant labels and irrelevant
labels is not distinct, which results in some irrelevant
labels being annotated as candidate labels. For example,
in Fig. 2, the threshold chosen by an unreliable annotator
leads to the candidate label set {Jacket, DownCoat,
Shirt, Suit} where Suit is not valid.

2)

Therefore, the latent label distribution is the essential super-
vision in partially multilabeled data and worth to be leveraged
for predictive model training. Although label distributions are
not explicitly available in partial multilabel training sets, they
can be somehow recovered. Accordingly, a novel partial mul-
tilabel learning algorithm named PENAD, that is, Progressive
ENhancement of IAbel Distributions for partial multilabel
learning, is proposed in this article. Specifically, the label
distribution is recovered by considering the observation model
for logical labels and the sharing topological structure from
feature space to label distribution space. In addition, the latent
label distribution is progressively enhanced by recovering
latent labeling information and supervising predictive model
training alternatively to make the label distribution appropriate
for the induced predictive model.

Preliminary results of this article have been reported in a
shorter conference version [9]. While the conference version
recovers the label distributions and trains the predictive model
in separated stages and only the topological information of the
feature space, here we consider the observation model and the
predictive model to enhance latent label distribution progres-
sively. Moreover, we formulate the label enhancement (LE)
and predictive model training into a unified framework. The
recovery experiments on label distribution datasets are con-
ducted to show that PENAD is effective to recover inherent
label distributions in partial multilabel examples. Besides, the
ablation experiments are conducted to validate the usefulness
of recovered latent label distributions for improving the per-
formance and the superior performance of PENAD against the
conference version.

The rest of this article is organized as follows. First, some
related works are briefly reviewed in Section II. Second,
technical details of the proposed approach are presented in
Section III. Third, the results of the extensive experiments
are reported in Section IV. Finally, conclusion is shown
in Section V.
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II. RELATED WORK

Two popular learning frameworks which are closely
related to partial multilabel learning, namely multilabel learn-
ing [10]-[12] and partial label learning (PLL) [13], [14], are
first reviewed.

In multi-label learning (MLL), each example is associated
with a number of valid labels simultaneously. Multilabel
learning approaches could be roughly divided into three types
with the order of the correlations among labels [10] utilized for
training predictive models. The simplest one is the first-order
type, which disassembles the MLL problem into a number
of binary classification problems [15], [16]. However, these
approaches neglect the useful information of one label for
another label in learning process. The second-order approaches
consider the label correlations between pairs of labels [17],
[18]. Nonetheless, the second-order approaches [17], [18] only
consider the difference between relevant labels and irrelevant
labels. The high-order approaches further focus on the label
correlations among label set [19]-[22]. Both MLL and PML
aim to induce a multilabel predictive model which would
predict a proper set of labels for unseen instances. Compared
to MLL, the task of PML is more challenging because the
valid labels in candidate label sets are not directly available
for learning algorithms in PML.

In PLL, a candidate label set is corresponding to each exam-
ple and only one of them is valid. Therefore, the task of PLL is
to learn a single-label predictive model that could predict one
proper label for unseen instance. Existing PLL methods handle
the PLL problem by disambiguation [13], [23]. To handle
the disambiguation, progressive learning-based methods are
proposed to identify the ground-truth label progressively in
the learning process [24]-[26]. Both PML and PLL learn
from training examples with a candidate label set that contains
false-positive labels. However, PML is more difficult than PLL
because PML needs to induce a multilabel predictive model
rather than a single-label predictive model.

In order to handle partial multilabel learning problem, the
straightforward strategy is treating all candidate labels as
valid ones. Thereafter, the desired multilabel predictor can
be induced by adopting any off-the-shelf MLL algorithms.
Nevertheless, it is definitely seen that the performance of the
strategy would be affected negatively by the candidate labels
which are false-positive ones. In addition, another strategy
to facilitate the PML problem is identifying the ground-truth

ones in the candidate label sets. One recent attempt is utilizing -

the confidence degree of each candidate label to be the valid
one [6]. Nonetheless, as the confidence degree ignores the
irrelevance of the non-candidate labels, it could be error-prone
especially with a label set that contains a high scale of
false-positive labels. Low-rank assumption is adopted to iden-
tify the noisy labels for disambiguation [4], [5]. For credible
label elicitation techniques, the valid labels are identified from
each candidate label set to make final prediction on unseen
instance [1], [2]. Noisy label identification is proposed to
simultaneously recover the ground-truth label and identify the
noisy labels [7].

To deal with PML problem, we adopt label distribution [8]
to comprehensively describe the label ambiguity in the PML
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datasets. Label distribution is a real-valued vector which can
explicitly describe label ambiguity with the description degree.
The learning process on the examples associated with label
distributions is therefore called label distribution learning
(LDL) [8]. According to the theoretical analysis [27], LDL
is approximate to the optimal classifier via learning on the
instances labeled by the ground-truth label distributions. There
are several algorithms [8] designed for LDL, and the spe-
cialized algorithm is proposed by applying maximum entropy
model with Kullback—Leibler divergence as loss function to
learn the label distribution. LDL has been successfully utilized
in many real applications, such as head pose estimation [28],
facial landmark detection [29], zero-shot learning [30], age
]jﬁiﬂ*ﬁ? estimation [31], [32], and emotion analysis from texts [33].
"ﬁ"jﬁggi However, label distributions are not explicitly available
;E,ng in most training sets. To overcome this situation, a process
— s\ named LE [34] is defined for recovering label distributions
*’j"‘—""n from training datasets. Many LE approaches [35]-[38] are
] proposed to deal with MLL and LDL problems. In addition,
some approaches with similar functionality for LE have been
LE{E

proposed [39]-[41], while there is no explicit concept of
F—A LE defined in the existing work. Most LE approaches are

commonly treated as an independent stage and output label
ERIBEY distributions for subsequent MLL or LDL straining stage,
TEZ, which neglects to generate a more proper label distribu-
ZIBE Y tion for subsequent model induction. In addition, these LE
?3 Egi approaches rely on multiple valid labels but cannot deal with
g the false-positive labels in PML.

. In Section III, a novel partial multilabel learning approach
NERK will be introduced. The label distributions are recovered from
B 51E the PML examples by partial multi-LE. In addition, partial
A%7%5 multilabel model induction is proposed to induce a predictive
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model via recovered latent label distribution. Different from
common LE-based strategies which treat LE as an independent
stage, the PENAD approach considers LE and predictive model
induction in a unified framework.

III. PROPOSED APPROACH

Formally, let X = RY denote the g-dimensional feature
space and YV = {yi, y2. ..., y.} denote the output space with
¢ possible class labels. Given the partial multilabel learning
training set D = {(x;,Y;) | | < i < n}, the task of partial
multilabel learning is inducing a multilabel predictive model
FiEE 2Y from the training set. Here, x; € X denotes a
g-dimensional feature vector and ¥; € ) is the candidate label

space could be transferred to label distribution space with
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we let 0; = [0,,b,]", ¢; =
[015027'-'50(‘]'

[p(x)T. 117, and © =

A. PENAD Framework

Note that the previous conference version [9] recovers the
label distributions and trains the predictive model in separated
stages and only the topological information of the feature
space. Here, the PENAD approach not only focuses on the
latent label distribution in PML example, but also considers
the following assumptions about latent label distributions:
1) the logical label is observed from the latent label distri-
bution; 2) the local topological structure of the label distrib-
ution space should be consistent with the feature space; and
3) the label distribution is appropriate for the predictive model
induction. Thus, PENAD fuses the observation model and the
predictive model to enhance label distribution progressively
and formulates the LE and predictive model training into
a unified framework. Then, latent label distribution D and
the predictive model © induction in PENAD are coupled by
minimizing the following objective function:

min £(©,D) + R(D).

2

PENAD not only considers the label distribution regulariza-
tion, but also adjusts the label distributions to facilitate predic-
tive model induction. On the other hand, PENAD handles the
structural risk minimization with the latent label distributions.

=hyat

Motivated by the assumption that the logical label vec- 155.}]%
tor I; in PML data is the observed vector from the latent 12&3
label distributions d;, we propose an observation factor § = $ﬁ§

[81,62,...,0,]" to generate the candidate labels from the 1%;‘5
latent label distribution by 3,~ = B(d;d;). Here, B()) is a 51;—
function to binarize each element in a real-value vector into 28
{0, 1}. Therefore, the observation regularization is proposed as
follows:

P A
KLY

i)
RiD, 8) = D Il — B@id)|.

i=l1

3)

To make the function differential, we employ the sigmoid
function &(-) instead of the binarization function B(-).

We assume that A = [a;;],x, denotes the weight matrix
in an_affinity graph G = (V, £, A) of features, where ) and
& correspond to the vertex set consisting of feature vectors
and the edge set. The local topological structure of feature

—AE s\
smoothness assumption [42], which leads to the following h‘ﬁﬂ

set corresponding to each x;. I; = [[]', 1, ..., ['1" € {0, 1} error reconstruction function: T=
denotes the c-dimensional observed logical label vector of _ 2 TEE
x;, ie, Iy = 1if y; € ¥, otherwise I/ = 0. d; = Ra/D)= [ — DA (* - =
[d",d”,....,d*1" €0, 1]° denotes the c-dimensional label Here, the weight matrix A = [@;;],x, could be generated = ,_5};
distribution. Then X = [x), ¥, ..., %], L = [l,l>,.... I, by modeling the relationship between k-nearest examples via (71 =7
and D = [d,, d>, ..., d,]| represent the feature matrix, Togical ~feature space reconstruction GRtRE

label matrix, and label distribution matrix, respectively. @_

represents the predictive model
SEEREE R e e e e

Vier® il =, 9) = 9I(p(xi) +b;
0] = 079 (D

where ¢@(x) is a nonlinear transformation of x to a
higher-dimensional feature space. For convenient describing,

VaKil:)

n
1 T o " 2
min > [lx; - >, ayxill E=]
j=1 ieN (x;)
s.t. Z a;=1(1<j=<n)

fEN(xJ)
ajj = 0 (V i€ N(x,))

ai; =0 (Vig¢N(x))) (5)

Authorized licensed use limited to: Hohai University Library. Downloaded on December 23,2023 at 11:01:17 UTC from IEEE Xplore. Restrictions apply.



IR
Fig2
chig]

el

XU et al.: PROGRESSIVE ENHANCEMENT OF LABEL DISTRIBUTIONS FOR PARTIAL MULTILABEL LEARNING

where N (x ;) denotes the index set of k-nearest neighbors
identified for x; in D. The resulting problem (5) corresponds
to a quadratic programming (QP) problem.

Then, PENAD considers a least-square loss that measures
how the prediction fit the latent label distribution

L£,(D,0)=[0"®—-D|> (6)

where ® = [¢,¢,,...,¢,]. As the average value corre-
sponding to non-candidate labels should be less than the
average value corresponding to candidate labels [13], [43],
an additional partial multilabel loss is designed as follows:
L£:(@)=tu(P'O'®). (7)
Here, P = [py, py. ..., p,] and p; = [px, px..... px]’
is calculated to measure the difference between each average
values

1
——, ify;ev;
1'Y’" =

Voot px = ey ®)
= s 1y, i

|Yil

where V; denotes the candidate label set corresponding to x;
and its complementary set is denoted as Y;.

Finally, the optimization problem in (2) can be rewritten as

min  $1©'® —D| + ftr(PTOT ) + O]
+41 D Il = S(@:dy)|* + 22]D — DA}
i=1
s.t. 0<dy <1 Vl<i<ml<j<ec 9)

A virtual label bipartition is employed to predict a proper
label set for unseen instance x with the predictive model in
PENAD. Specifically, an extra virtual label y, is added to serve
as a threshold to bipartite the labels into relevant labels and
irrelevant labels. Then the partial multilabel set ) is expanded
to V' = YU} = (¥, Vi, ..., ). In this article, [3° is set to
be 0.5. Once the latent label distributions and theMe
model have been learned on the extended the partial multilabel
set, the predicted label set corresponding to the test instance
x can be predicted. Let ®* = [0, 07, ..., 0] be the final
predictive model after optimization, the outputs on each class
v; (I < j <e¢)and y are

Ve ot fulx) =057 .

Then, the predicted labels corresponding to x are deter-
mined via splitting the outputs

(10)

c@)={y; | f(yjlx) > fyolx), 1 =j<c}| (1)

B. Optimization
The optimization problem in (9) can be solved in an
alternating way. When © and § are fixed, (9) can be reduced as

. T _ 2 1 L s 212
min - £®" @ DHF+A1;||L S(ady)||
+42|ID — DA |}
s.t. 0<dy <1 Vl<isml<jc<ec (12)
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Note that (12) corresponds to a standard constrained QP
process whose computational complexity would be demanding
when n x ¢ is large. Inspired by [43], we can choose to solve
it with alternating optimization strategy where a series of QP
subproblems, where each label distribution d; is optimized by
fixing the values of other label distributions d;(j # i)

~

min A0, —d;|I* + il — S(S:d)|

i

+A2ld; — Zafidj\|2
i

s.L. 0<dy <1 Vi<i<nl<j<e (13)
When @ and D are fixed, (9) can be reduced as

i I — Sd)I? 14

min ;n @) (14)

which can be solved by BFGS with the first-order gradient
Vi = > (-28%(6:d”) + 247 5 (5.4
j=1

+217d 8 (6id]") — 217d " S(5:d77)).  (15)

When D and é are fixed, (9) can be reduced as
min  fi|©@7® — D[} + four(PTOT®) + |O]F  (16)
which can be solved by BEGS with the first-order gradient
Vo =2/199'@ +20 250D +5,oP". (17)

According to the representor’s theorem [44], a learning
problem can be expressed as a linear combination of the
training examples in the feature space under fairly general
conditions, that is, 8/ = > n/¢(x;). This expression can be
replaced into (1) and (9), which will generate the inner product
< @(x;), (x;) > and apply the kernel trick.

To summarize, Table I gives the pseudo-code of PENAD.
In the training stage, label distributions are recovered from
observed logical labels and a predictive model is learned via
alternating optimization (steps 1-9). In the prediction stage,
predictive result on the unseen instance is made via virtual
label bipartition and the resulting model (steps 10-11).

C. Complexity Analysis

In this part, we discuss the time complexity of our method,
which includes three aspects, that is, the weight matrix A
learning procedure, the initialization procedure, and the opti-
mization procedure. First, the time cost of learning A is
O0(¢*n* + Tin?). Note that an iterative strategy is employed
to solve the optimization problem in Eq. (5), and the iteration
number is 7). Second, the total time cost of initializing DO,
O and §2 is O(cn+cm-+n), where m is the feature dimen-
sion after the nonlinear transformation. Third, the time cost of
the optimization procedure is O(z(c*n® + Tren + Tz(cmn +
cm?® 4+ m*n))), where ¢ is the iteration number of the whole
optimization procedure. Specifically, the time consumption of
updating D in each iteration is O (¢?n?). The time consumption
of updating § by BFGS is O(T»cn), where T is the iteration
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TABLE I
PSEUDOCODE OF PENAD
Inputs:
D: the partial multi-label training set
A1, A2, 581,82 the hyper-parameters
x: the unseen instance
Outputs:
Y: the predicted label set for @
Process:
1: Generate the affinity graph G = (V, £, A);
2: A is obtained by solving optimization problem (5) ;
3: Initialize t = 0, DO, @) and §(0);
4: repeat
5: Update D+ by adopting quadratic programming subproblems Eq.

(13);
6: Update 6 by BFGS with Eq. (15) ;
7:  Update ®{t+1) by BEGS with Eq. (17);
8: t=t+1;
9: until convergence
10: The final predictive model is obtained by setting @* = @(#);
11: Return a proper label set ¥ according to Eq. (11).

number of BFGS in this step. In each iteration, the time cost
of updating ® by BFGS is O(Ts(cmn + em® + m”n)), where
T3 is the iteration number of BFGS. Therefore, the whole time
complexity of our method is O(¢*n* + Tin*+cn+cm+n+
t(c*n® + Tren + Ti(emn + em? + m®n))).

IV. EXPERIMENTS
A. Experimental Setup

1) Datasets: In order to thoroughly evaluate the perfor-
mance of the proposed approach, a lot of synthetic and
real-world partial multilabel datasets have been utilized for
experimental studies. Table II shows statistics of these datasets.

Specifically, the synthetic datasets are all generated from
multilabel datasets via inserting noise into labels. Some of
the irrelevant labels corresponding to each example are ran-
domly chosen to become the candidate labels along with the
relevant labels. Table II shows seven benchmark multilabel
datasets [10] which are utilized to generate synthetic partial
multilabel datasets, including emotions, image, scene,
eurlex_sm, yeast, msra, and computer. For each
dataset, we vary the average number of candidate labels to
constitute different configuration. Accordingly, 24 synthetic
datasets are generated. In addition, four real-world partial
multilabel datasets, that is, music_emotion, yeastBP,
music_style, and mirflickr [45] are employed in the
experiments. For the real-world datasets, the candidate label
sets are collected from web, and valid labels are further
checked by humans.

2) Methodology: PENAD is compared against six state-
of-the-art partial multilabel approaches, each of which is
configured with the hyperparameters suggested in respective
literature except FPML since we have properly tuned these
approaches and found a better configuration for FPML.

1) PML-FP [6]

and predictive

which optimizes labeling confidence
model alternatively with feature

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 8, AUGUST 2023

prototypes [suggested configuration: C; = 1, C; with
{1,2,...,10}, C5 with {1, 10, 100}].

2) FpML [5] which adopts noisy labels estimation to learn
from partial multilabel examples via low-rank approx-
imation [configuration: 4, = 5, 4, = 1, 43 = 10
(suggested configuration: 4; = 1, 4, = 1, A3 = 10)].

3) PARTICLE-VLS [2] which adopts credible label elicita-
tion technique to learn from partial multilabel examples
and virtual label splitting for predictive model induction
[suggested configuration: &k = 10, « = 0.95, thr = 0.9].

4) PARTICLE-MAP [2] which adopts credible label elicita-
tion technique to learn from partial multilabel examples
and maximum a posteriori (MAP) reasoning for predic-
tive model induction [suggested configuration: k = 10,
a =0.95, thr =0.9].

5) PML-LRS [4] which adopts low-rank and sparse decom-
position scheme to learn from partial multilabel exam-
ples [suggested configuration: y =1, y = 0.1, f =1].

6) DRAMA [46] which generates a real-valued label con-
fidence matrix under the guidance of feature manifold
and the candidate label set [suggested configuration:
d; =0.01, 6, = 0.5, k = 10].

For PENAD, the parameter k, A;, Ay, f1, and f, are
fix to 10, 0.01, 0.01, 1, and 10, respectively. The kernel
function in PENAD is Gaussian kernel. We perform fivefold
cross-validation on each dataset, where mean values and
standard deviations are recorded.

3) Evaluation Metrics: Five popular multilabel metrics, that
is, Hamming loss, One-error, Coverage, Ranking loss, and
Average precision [10] are adopted for performance evaluation.

Conceptually, Hamming loss evaluates the fraction of the
misclassified instance-label pairs, that is, a relevant label is
missed or an irrelevant label is predicted, One-error evaluates
the fraction of the instances whose top-ranked label is irrele-
vant, Coverage evaluates the average number of steps to move
down the ranked label list of an instance so as to cover its
relevant label set, Ranking loss evaluates the average fraction
of the label pairs among which an irrelevant label is ranked
higher than its relevant one, and Average precision evaluates
the average fraction of relevant labels which are ranked higher
than a particularly relevant one.

Note that for all metrics, the values vary between [0,1].
Furthermore, the larger the value of average precision, the
better the performance. While for Hamming loss, One-error,
Coverage, and Ranking loss, the smaller the values, the better
the performance. The metrics could be adopted as well indica-
tors for comprehensive studies, since the five metrics evaluate
the performance of learned models in different aspects.

B. Experimental Results

Tables ITI-VII show the results of all approaches on all met-
rics. For brevity, the results on some synthetic configurations
are given in each synthetic PML dataset, that is, avg. #CLs
being 3 and 5 for emotions, #CLs being 3 and 5 for scene,
9 and 13 for yeast, 6 and 14 for eurlex_sm, 9 and 17 for
msra, and 5 and 13 for computer.

Furthermore, Friedman test [47] is employed here to
analyze the relative performance of the PML approaches.
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TABLE II
STATISTICS OF THE DATASETS USED IN THE EXPERIMENTS

Dataset #Examples | #Features | #Labels avg. #CLs avg. #GLs
emotions 593 72 6 35 1.86
msra 1,868 898 19 9,11, 13, 15, 17 6.31
image 2,000 294 5 2,4 1.23
scene 2,407 294 6 3,5 1.07
yeast 2,417 103 14 9. 11, 13 4.23
computer 11,235 880 25 5,7,9, 11, 13 1.51
eurlex_sm 12,679 100 15 6, 8, 10, 12, 14 1.53
yeastBP 560 5548 217 3043 21.56
music_emotion 6,833 98 11 5.29 2.42
music_style 6,839 98 10 6.04 1.44
mirflickr 10,433 100 7 3.35 1.77
TABLE III

EXPERIMENTAL RESULTS (MEAN=STD) MEASURED BY Ranking loss. THE BEST PERFORMANCE (THE SMALLER THE BETTER) [S SHOWN IN BOLD FACE

Data Set avg #CLS PENAD PML-FP PARTICLE-VLS PARTICLE-MAP PML-LRS FPML DRAMA
. 3 0.16340.016 | 0.196+0.017 0.181£0.019 0.1724+0.018 0.200+0.013  0.202+£0.016  0.254+£0.016
5 0.229+0.018 | 0.280+0.018 0.269+0.034 0.25240.036 0.2554+0.024  0.253+0.061 0.324+0.016
T— 2 0.155+0.018 | 0.192+0.017 0.193£0.019 0.1724+0.018 0.186+0.016  0.180+£0.017  0.263£0.020
-+ 0.196+0.008 | 0.258+0.014  0.262+0.016 0.236+0.014 0.245+0.014  0.239+£0.011 0.280=£0.015
scene 3 0.078+0.008 | 0.151+0.011 0.119+0.006 0.104+0.010 0.125+0.012  0.100+£0.008  0.205+0.014
5 0.1194+0.014 | 0.24840.020 0.233+0.017 0.19540.013 0.20440.019  0.175+0.021  0.230+0.018
yeast 9 0.18140.007 | 0.187+0.008 0.192£0.006 0.21440.008 0.3724+0.010  0.189+0.007  0.292+0.008
13 0.2094+0.004 | 0.2614-0.004 0.244+0.003 0.24540.007 0.4304+0.006  0.2414+0.003  0.334+0.010
ilaR & 6 0.094+0.003 | 0.141£0.004 0.109£0.001 0.11140.004 0.131+0.002  0.198+0.007  0.177+£0.005
- 14 0.190-+0.004 | 0.227-+0.007 0.231£0.004 0.20440.006 0.2114+0.004  0.258+0.013  0.319+0.005
S 9 0.133+0.005 | 0.149+0.005 0.159+0.002 0.17040.005 0.1604+0.006  0.147+0.003  0.252+0.005
17 0.18140.005 | 0.243+0.008 0.257+0.005 0.31040.008 0.23640.004  0.244+0.007  0.322+0.009
computer 5 0.108+0.007 | 0.373£0.183 0.129-+0.007 0.24040.007 0.200+0.012  0.161£0.007  0.204£0.005
13 0.10740.006 | 0.30140.103 0.198+0.005 0.32440.010 0.2600.007  0.130£0.005 0.256£0.012
music_emotion 529 0.23440.006 | 0.277+£0.008 0.265+0.008 0.253+0.008 0.251+0.003 0.252+0.006 0.351=£0.013
music_style 6.04 0.134+0.004 | 0.148+0.003 0.157+0.002 0.164+0.004 0.283+0.005 0.142+0.003  0.258+0.003
mirflickr 3.35 0.094+0.030 | 0.160+0.049 0.225+0.026 0.1154+0.073 0.2824+0.124  0.162+0.103  0.172+0.083
yeastBP 30.43 0.256+0.028 | 0.363+0.041 0.935+0.037 0.28340.040 0.406+0.048 0.381+0.044  0.396£0.026

TABLE IV

EXPERIMENTAL RESULTS (MEAN=STD) MEASURED BY One-error. THE BEST PERFORMANCE (THE SMALLER THE BETTER) IS SHOWN IN BOLD FACE

Data Set avg #CLS PENAD PML-FP PARTICLE-VLS  PARTICLE-MAP PML-LRS FPML DRAMA
emotions 3 0.270+0.025 | 0.335+0.031 0.224--0.040 0.244+40.055 0.357£0.050  0.32040.052  0.354=+0.037
5 0.331+£0.042 | 0.426£0.040 0.3150.048 0.348+0.066 0.398+£0.052  0.40610.025 0.445£0.045
—_— 2 0.292+0.024 | 0.358+0.015 0.284-+0.035 0.317+0.041 0.345+0.023 0.35140.029 0.415+0.013
4 0.358+0.023 | 0.459+0.021 0.377+0.030 0.427+0.036 0.435+£0.023  0.43340.027 0.448+0.024
e 3 0.230-£0.019 | 0.382+0.021 0.240£0.021 0.286+0.019 0.320£0.020 0.27740.022  0.389£0.027
5 0.330-£0.032 | 0.544-+0.036 0.374-£0.026 0.449+0.031 0.466+0.033  0.43040.037  0.434+0.024
yeast 9 0.237+0.006 | 0.266£0.029 0.229-£0.006 0.245+0.018 0.459+£0.027  0.23240.009  0.284+0.013
13 0.254+0.011 | 0.35540.021 0.238-0.008 0.257+0.012 0.602+0.027  0.2714+0.005  0.305+0.010
. 6 0.264-+0.006 | 0.361+0.005 0.225+0.009 0.268+0.010 0.367+0.005 0.47740.032  0.343+0.006
= 14 0.443+0.015 | 0.508+0.010 0.399+0.011 0.445+0.012 0.522+0.025  0.594+0.034  0.66040.009
fista 9 0.051+0.008 | 0.062-£0.006 0.0554+0.011 0.106+0.024 0.083+£0.013  0.068+0.013  0.12040.018
17 0.078+0.011 | 0.144+0.008 0.085£0.005 0.329+0.090 0.155£0.014  0.24440.026  0.153£0.011
computer 5 0.388+0.009 | 0.710£0.101 0.390+0.015 0.736£0.021 0.463£0.017  0.4584+0.005  0.512£0.007
13 0.432+0.004 | 0.617+0.095 0.454+0.010 0.898+0.014 0.599+0.014  0.44040.006  0.545+0.012
music_emotion 5.29 0.430+£0.018 | 0.546+0.019 0.452-+0.040 0.475+0.021 0.465+0.013  0.5024+0.012  0.555+0.035
music_style 6.04 0.334£0.007 | 0.409+0.014 0.368£0.008 0.385+0.018 0.570£0.007  0.3651+0.007  0.468+0.005
mirflickr 3.35 0.107£0.046 | 0.328+0.129 0.165£0.152 0.188+0.174 0.587£0.096 0.3274+0.185 0.339£0.135
yeastBP 3043 0.888+0.060 | 0.922+0.036 0.906+£0.054 0.912+0.054 0.970+£0.014  0.884+0.043 0.961+0.040

Table VIII shows the Friedman statistics Fr over all evaluation on all of the evaluation metrics across the 28 benchmark
metrics along with the critical value at 0.05 significance level.  cases.

Table VIII reports that the null hypothesis of indistinguish- Bonferroni—-Dunn test [47] is utilized as the post-hoc
able performance among comparing approaches is rejected test to show whether PENAD have a significantly different
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TABLE V

EXPERIMENTAL RESULTS (MEAN=STD) MEASURED BY Hamming loss. THE BEST PERFORMANCE (THE SMALLER THE BETTER) IS SHOWN IN BOLD FACE

Data Set avg #CLS PENAD PML-FP PARTICLE-VLS PARTICLE-MAP PML-LRS FpML DRAMA
cmations 8 0.18240.012 | 0.241£0.013 0.205£0.009 0.22640.009 0.2954+0.023  0.186+0.015  0.219£0.020
5 0.21740.019 | 0.2714+0.013 0.344+0.034 0.264+0.020 0.3554+0.013  0.22140.019  0.236£0.013
fHige 2 0.150=+0.001 | 0.190+0.006 0.175+0.012 0.1794+0.017 0.380+0.011  0.173£0.011  0.200-£0.003
4 0.180+0.006 | 0.231+£0.012 0.329£0.010 0.236%0.019 0.435+0.005 0.206£0.004 0.208+0.012
SCBHE 3 0.083+0.006 | 0.139+0.006 0.117+0.002 0.11440.005 0.351+0.005 0.097+0.009  0.142+0.009
) 5 0.118+0.012 | 0.193+0.011 0.383+£0.014 0.198+0.025 0.380+0.006  0.149+0.014  0.158+0.006
— 9 0.13740.001 | 0.21540.005 0.207£0.010 0.23740.013 0.4384+0.006  0.198+0.002  0.227+0.003
13 0.14340.001 | 0.268+0.004 0.697+0.004 0.23240.006 0.4654+0.006  0.192+0.001  0.269+0.005
et sin 6 0.07040.001 | 0.084+0.001 0.067+0.000 0.07840.002 0.0854+0.001  0.140+0.001  0.082+0.001
= 14 0.091£0.002 | 0.103+0.001 0.897+0.000 0.15040.004 0.1064+0.003  0.154+0.004  0.119+0.001
msra 9 0.104+0.001 | 0.1164-0.002 0.117+0.002 0.14540.001 0.19440.003  0.188+0.002  0.143+0.003
17 0.10440.001 | 0.11540.001 0.171£0.003 0.13640.004 0.19440.002  0.1814+0.003  0.163+0.003
computer 3 0.068+0.001 | 0.103£0.012 0.054-£0.001 0.12440.003 0.0724+0.003  0.099+0.001  0.074=+0.001
13 0.0604+0.001 | 0.097:£0.010 0.0644-0.001 0.13540.004 0.1814+0.013  0.080£0.001  0.0832£0.002
music_emotion 5.29 0.12310.002 | 0.244-0.002 0.211£0.004 0.21740.003 0.3894+0.003  0.151£0.002  0.25820.002
music_style 6.04 0.1114+0.003 | 0.125+0.002 0.121£0.001 0.15540.004 0.4324+0.003  0.11940.002  0.318+0.006
mirflickr 3.35 0.046+0.013 | 0.214-+0.048 0.1864-0.036 0.18040.036 0.3294+0.076  0.137+0.033  0.218+0.028
yeastBP 30.43 0.031£0.001 | 0.054-+0.008 0.042+0.008 0.04440.008 0.13440.008  0.142+0.009 0.120=£0.013

TABLE VI

EXPERIMENTAL RESULTS (MEAN=STD) MEASURED BY Coverage. THE BEST PERFORMANCE (THE SMALLER THE BETTER) IS SHOWN IN BOLD FACE

Data Set avg #CLS PENAD PML-FP PARTICLE-VLS PARTICLE-MAP PML-LRS FPML DrAMA
SHEHGHE 3 0.300£0.016 | 0.323+0.022 0.307+0.019 0.318+0.020 0.320£0.015  0.339+£0.020  0.38340.019
5 0.364-+0.015 | 0.398+0.010 0.3754+0.017 0.3844+0.010 0.373+0.041  0.38040.022  0.44740.028
image Z 0.178+0.015 | 0.206+0.014 0.1944-0.014 0.194+0.015 0.203+0.013  0.1984+0.013  0.26540.020
4 0.211+0.011 | 0.26140.017 0.2424+0.018 0.24240.017 0.250+0.016 0.244+0.012  0.278+0.015
— 3 0.079+0.006 | 0.141+0.010 0.098+0.002 0.102+0.008 0.119+0.010  0.098+0.007 0.188+0.012
5 0.114+0.014 | 0.223+0.016 0.179+0.010 0.178+0.011 0.187+0.018 0.160£0.019  0.208+0.015
— 9 0.476+0.011 | 0.489+0.014 0.477+0.007 0.549+0.016 0.636+0.014 0.4914+0.012 0.627+0.011
13 0.515+0.008 | 0.589+0.009 0.558+0.005 0.590+0.013 0.686+0.007 0.5754+0.006  0.6824+0.014
curlex sm 6 0.148+0.003 | 0.19940.005 0.154+0.002 0.170+0.005 0.186£0.004 0.257+£0.006  0.24440.006
= 14 0.254+0.006 | 0.296+0.009 0.263+0.004 0.270+0.006 0.276+0.004 0.3214+0.013  0.390+0.007
msra 9 0.546+0.011 | 0.57140.008 0.562+0.004 0.601+£0.007 0.584-+£0.009 0.57340.007  0.704+0.011
17 0.623£0.009 | 0.691+0.005 0.692+0.007 0.749+0.011 0.679+£0.008 0.686+£0.007 0.777+0.009
complier 3 0.160+0.010 | 0.435+0.169 0.174+0.009 0.291+0.007 0.256+0.012 0.217+0.010  0.26540.008
13 0.157£0.009 | 0.365+0.094 0.246+0.008 0.374+0.010 0.316£0.006  0.184+0.007  0.32040.010
music_emotion 5.29 0.403+£0.005 | 0.435+0.005 0.41040.006 0.418+0.010 0.4104+£0.006  0.413+£0.007  0.530£0.011
music_style 6.04 0.193+0.007 | 0.204+0.006 0.199+0.006 0.2244+0.006 0.338+£0.004  0.19940.006  0.209+0.001
mirflickr 3.35 0.2394+0.021 | 0.25540.047 0.283+0.058 0.226+0.041 0.346+0.142  0.264+0.042  0.27640.055
yeastBP 30.43 0.471£0.045 | 0.49940.072 0.800+0.075 0.41940.079 0.604£0.038  0.623+0.041  0.710£0.050

TABLE VII
EXPERIMENTAL RESULTS (MEAN£STD) MEASURED BY Average precision. THE BEST PERFORMANCE
(THE SMALLER THE BETTER) IS SHOWN IN BOLD FACE

Data Set avg #CLS PENAD PML-FP PARTICLE-VLS PARTICLE-MAP PML-LRS FPML DRAMA
SHiciiens 3 0.804+0.021 | 0.78140.021 0.800+0.020 0.800£0.027 0.757£0.021  0.760£0.025  0.72840.020
5 0.743+0.025 | 0.708+0.025 0.717+0.026 0.724+0.041 0.714+0.022  0.716+0.017  0.6624+0.020
e 2 0.811+0.018 | 0.769+0.013 0.790+0.024 0.789+0.024 0.776+0.016  0.777+0.019  0.7174+0.014
4 0.768+0.013 | 0.701+0.014 0.721+0.015 0.723+0.018 0.718+0.015  0.720£0.015  0.698+0.014
_ 3 0.863+0.011 | 0.762+0.015 0.830+0.009 0.826+0.013 0.801+0.015 0.832+0.013 0.736+0.017
5 0.780+0.020 | 0.64440.024 0.703+0.012 0.712+0.019 0.699+0.024  0.7304+0.026  0.70540.015
— 9 0.747£0.006 | 0.738+0.011 0.744+0.007 0.722+0.007 0.558+£0.008 0.743+£0.006  0.64440.005
13 0.712+0.004 | 0.65140.004 0.704+0.003 0.688+0.001 0.475+£0.005 0.687+0.003  0.60340.010
curlex sm 6 0.779+0.004 | 0.69540.004 0.777+0.005 0.762+0.007 0.700+£0.005  0.603+£0.018  0.68340.005
= 14 0.621+0.006 | 0.563+0.006 0.610+0.007 0.606+0.010 0.565+0.015  0.506+0.024  0.437+0.006
msra 9 0.818+0.005 | 0.799+0.006 0.799+0.002 0.767+0.006 0.781+£0.008 0.802+0.005 0.692+0.005
17 0.764-0.004 | 0.694+0.008 0.71140.004 0.605+0.016 0.688+0.006 0.678+0.009  0.62740.007
computer 5 0.6660.009 | 0.385+0.120 0.653+0.010 0.402+0.013 0.591+£0.016  0.591+0.008  0.52640.004
13 0.638+0.005 | 0.454+0.092 0.5760.007 0.262+0.015 0.472£0.009 0.61440.006 0.481+0.011
music_emotion 5.29 0.631+0.010 | 0.56640.009 0.607+0.010 0.611£0.011 0.621£0.006  0.5984+0.006  0.517£0.017
music_style 6.04 0.746+0.004 | 0.701£0.005 0.713+0.004 0.710+0.007 0.554+0.004 0.7254+0.004  0.61540.002
mirflickr 3.35 0.867+0.034 | 0.744+0.058 0.671+0.027 0.827+0.101 0.615+£0.078  0.7524+0.127  0.748+0.083
yeastBP 30.43 0.177+0.045 | 0.143+0.021 0.0864+0.019 0.158+0.016 0.086+0.016 0.149+4+0.038  0.148+40.022

performance against comparing PML approaches. Here,
PENAD is treated as the control approach where the dif-
ference of average rank (over all datasets) between PENAD

and one comparing approach is
difference (CD). If the average
than one CD (CD = 1.5231 with comparing approaches

calibrated with the critical
rank difference is greater
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Comparison of PENAD against other comparing approaches with the Bonferroni-Dunn test. The approaches which are not connected with PENAD in

the CD diagram are considered to be significantly different from PENAD (CD = 1.5231 at 0.05 significance level). (a) Ranking loss. (b) One-error. (c) Hamming

loss. (d) Coverage. (e) Average precision.

TABLE VIII

FRIEDMAN STATISTICS Frr ON ALL EVALUATION METRICS
AS WELL AS THE CRITICAL VALUE (AT 0.05 SIGNIFICANCE
LEVEL WITH # COMPARING APPROACHES i = 7 AND
# BENCHMARK DATASETS N = 28)

Evaluation metric Fp critical value
Ranking loss 28.4784

Hamming loss 24.4835

Coverage 32.9084 2.359
One-error 38.3513

Average precision 32.8540

n = 7, and benchmark datasets N = 28), the performance
between PENAD and one comparing approach is regarded to
be different.

Fig. 3 illustrates the CD diagrams [47] on five evaluation
metrics, where the average rank of each comparing PML
approach is marked along the axis, where a better rank is
set to the right. A thick line is used to connect the control
approach and one comparing approach if their average rank
difference is within CD. Otherwise, it is considered that the
comparing approach has a significantly different performance
against PENAD.

Based on the experimental results of comparative studies,
the following observations of the comparative studies can be
made.

1) Fig. 3 shows that PENAD achieves superior or at
least comparable performance against all the compar-
ing approaches on all evaluation metrics. Furthermore,
PENAD achieves lowest (best) average rank on all eval-
uation metrics.

The performance of PENAD is statistically comparable
to PARTICLE-VLS on One-error, and superior to all the
comparing approaches on other metrics.

Tables IMI-VII show that the performance advantage
of PENAD over comparing approaches is stable under
varying the average number of candidate labels.

Tables III-VII show that PENAD achieves optimal
performance in almost all cases (except on Cov-
erage where PARTICLE-MAP outperforms PENAD
on mirflickr, yeastBP, and One-error where
FPML outperforms PENAD on yeastBP) on the four

2)

3)

4)

real-world PML datasets yeastBP, music_style,
music_emotion, and mirflickr.

In summary, these experimental results clearly validate the
effectiveness of PENAD for learning from partial multilabel
examples.

C. Further Analysis

1) Sensitivity Analysis: In this section, performance sensi-
tivity of the proposed PENAD approach w.r.t. its parameters
A1, A2, B, and f> will be further analyzed.

Fig. 4 illustrates how PENAD performs under different para-
meter configurations. For clarity of illustration, three datasets
msra, music_style, and mirflickr are chosen here for
sensitivity analysis, while similar observations are also made
on other datasets.

As shown in Fig. 4, it is obvious that the performance
of PENAD is relatively stable across a broad range of each
parameter. This property is quite desirable as PENAD could
achieve robust classification performance without the need of
parameter fine-tuning. Therefore, the parameter configuration
for PENAD in Section IV-A naturally follows from these
observations.

2) Ablation_Studies: To show the helpfulness of latent
label distributions to PENAD, a vanilla variant about PENAD
(named as PENAD-nonLD) is adopted here which ablates
the latent label distribution and follows the same procedure
of PENAD with observed logical labels without considering
the latent label distributions. In addition, we compare the
approach of previous conference version (named as PML-LD)
which only consider the topological information of the feature
space for recovering latent label distribution. Following the
same experimental protocol in Section IV-A3, the results of
PENAD-nonL.D and PML-LD are investigated.

For brevity, Table IX reports the detailed experimental
results in terms of Average precision and Hamming loss,
and the results on some synthetic configurations are given in
each synthetic PML dataset, that is, avg. #CLs being 3 and
5 for emotions, #CLs being 3 and 5 for scene, 9
and 13 for yeast, 6 and 14 for eurlex_sm, 9 and 17 for
msra, and 5 and 13 for computer. The results on other
metrics are similar. In order to show whether PENAD has
a significant performance than other versions, we employ
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Parameter sensitivity analysis for PENAD on mirflickr, music_style, and msra. First: the performance changes as 4; increases from 0.01
10) on Ranking loss. Second: the performance changes as A> increases from 0.01 to 1.0 (4; = 0.01, 8, = 1, > = 10) on

Ranking loss. Third: the performance changes as f) increases from 0.5 to 4.5 (4} = 0.01, 1> = 0.01, > = 10) on Ranking loss. Fourth: the performance
changes as /> increases from 0.01 to 100 (1; = 0.01, 42 = 0.01, #; = 1) on Ranking loss. Fifth: the performance changes as k increases from 0.01 to 100
(21 =0.01, 22 = 0.01, g, = 1, f» = 10) on Ranking loss. (a) 4, (on Ranking loss). (b) A2 (on Ranking loss). (c) fi (on Ranking loss). (d) f2 (on Ranking
loss). (e) k (on Ranking loss).

TABLE IX
EXPERIMENTAL RESULTS (MEANZESTD) MEASURED BY Average precision AND Hamming loss

o . Average precision T Hamming Loss |
Dataset avg.CLs PENAD P%ME-LD PENAD-nonLD PENAD PML?-;LD PENAD-nonLD
- 3 0.80450.021 0.804=0.021 0.783£0.010 | 0.182£0.012 0.180£0.014  0.226+0.017
ST, 5 0.743+0.025 0.741+0.028  0.73340.022 | 0.2174+0.019  0.21840.023  0.24740.013
image p) 0.81110.0I18 0.809£0.020  0.788+£0.021 | 0.150£0.001 0.151F0.010  0.178+£0.013
4 0.768+0.013 0.762+=0.017  0.719+£0.009 | 0.180-0.006 0.186+0.009  0.2284-0.005
‘ 3 0.86350.011 0.863=0.013 0.817£0.016 | 0.083£0.006 0.03310.006 0.14120.008
Akl 5 0.780+0.020  0.797+0.022  0.69740.020 | 0.118+£0.012  0.11940.012  0.182-0.008
i 9 0.74710.006 0.746£0.007  0.738+£0.006 | 0.137£0.001 0.13910.001 _ 0.238+0.005
yeast 13 0.71240.004 0.7120.004  0.6860.002 | 0.143+£0.001 0.145+0.001  0.2444-0.003
" 6 0.77910.004 0.778£0.005  0.771£0.005 | 0.070£0.001 0.070£0.001 _ 0.072+0.001
- 14 0.621+0.006  0.619+0.006  0.563+0.009 | 0.091-0.002 0.09140.002  0.10740.001
- 9 0.81810.005 0.81210.005 0.798+50.003 | 0.10450.001 0.106+0.001 _ 0.130+0.002
17 0.764+0.004  0.754+0.004  0.68140.004 | 0.104+0.001 0.10740.002  0.16540.002
— 5 0.66610.009 0.64750.010  0.63610.010 | 0.06810.001 0.09210.001 _ 0.105+0.001
13 0.63820.005 0.5720.006  0.549+0.007 | 0.060-0.001 0.11740.001  0.1202-0.001
music_emotion | 5.29 0.631-0.010 0.630=0.010 0.6140.008 | 0.12350.002 0.12310.002  0.228+0.002
music_style 6.04 0.7460.004 0.737=0.003  0.712£0.005 | 0.111£0.003 0.10950.002  0.16220.002
mirflickr 335 0.867-0.034 0.835-0.090 0.753+£0.056 | 0.046:0.013 0.062+0.045  0.198+0.011
yeasiBP 2156 | 0.17750.045 0.17120.045 0.142+50.045 | 0.031:0.001  0.070+0.004  0.093+0.007

TABLE X 3) Quality of Recovered Latent Label Distributions: Note

WILCOXON SIGNED-RANK TEST FOR PENAD AGAINST ITS VARIANT
VERSION PENAD-NONLD AND CONFERENCE VERSION PML-LD ON
FIVE EVALUATION METRICS (AT 0.05 SIGNIFICANCE LEVEL)

that the label distributions leveraged by PENAD need to be
recovered from the training data. In order to show whether

Evaluation metric PENAD against PENAD-nonLD PENAD against PML-LD
performance p-value performance p-value
Ranking loss win 3.998¢ © win 5.662e °
One-error win 4.213e ¢ win 2.550e %
Hamming loss win 4.000e ¢ win 1.790e 4
coverage win 4.228¢~° win 1.182¢ %
Average precision win 3.998¢~° win 7.913¢ ="

Wilcoxon signed-rank test [47]. Wilcoxon signed-rank test is
a non-parametric test, which ranks the differences in perfor-
mances of two approaches for each dataset and compares the
ranks for the positive and the negative differences. Table X
shows the p-values for the corresponding tests and the statis-
tical test results at 0.05 significance level.

As shown in Table X, PENAD achieves superior perfor-
mance against PENAD-nonLD and PML-LD on all evaluation
metrics, which clearly validates the usefulness of latent label
distributions for improving performance and the substantial
improvement of PENAD on its conference version.

PENAD can successfully exploit the label distributions, the
recovering experiments are studied. Specifically, the label
distributions are recovered from the partial multilabel data
via PENAD and other comparing LE approaches. Then, these
output label distributions are normalized by softmax normal-
ization and compared with the ground-truth ones.

There are in total nine datasets used in the experiments.
These real-world datasets! contain real label distributions and
the corresponding logical labels [34].

1) Yeast-alphato Yeast-spo: These datasets are col-
lected from biological experiments on the budding yeast
Saccharomyces cerevisiae. The result of each biological
experiment is recorded by one dataset. Each dataset
contains 2465 yeast genes, and each of the genes is
represented by an associated phylogenetic profile vector.
The labels in each dataset are corresponding to the
discrete time points during one experiment. The gene

Thttp://ese.seu.edu.cn/PersonalPage/xgeng/LDL/index htm
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expression level at each time point exactly constitutes
the label distribution of the corresponding gene. These
datasets contain 2465 examples with 24 features and 6
to 18 class labels.

2) SBU_3DFE: This dataset is a facial expression database,
where each facial expression is assigned by basic emo-
tions such as sadness, happiness, fear, surprise, anger,
and disgust. A total of 23 persons annotate the level
of emotion intensity (1-5) for each facial expression,
and the averaged annotation intensities are utilized to
generate the ground-truth label distribution. There are
in total 2500 examples with 243 features and six class
labels in this dataset.

3) SJAFFE: This dataset is also a facial expression data-
base, where each facial expression is assigned by basic
emotions such as sadness, happiness, fear, surprise,
anger, and disgust. Similarly, a total of 60 persons are
asked to annotate the level of emotion intensity, and the
averaged annotation intensities are utilized to generate
the label distribution. This dataset contains 213 exam-
ples with 243 features and six class labels.

4) Movie: The dataset is a movie database, which con-
tains 7755 movies and 54242292 ratings from 478 656
different users. The ratings are on a scale from 1 to 5
integral stars (five labels). The label distribution is
calculated for each movie as the percentage of each
rating level. This dataset contains in total 7755 examples
with 1869 features and five class labels.

Specifically, the partial multilabel data is generated by
adding random labeling noise. Some of the irrelevant labels
corresponding to each example are randomly chosen to form
the candidate label set along with the valid relevant labels.

According to Geng’s suggestion [8], four evaluation metrics
are selected to quantify the quality of recovered latent label
distributions.

1) Chebyshev Distance

Dcpey = (1/n)Zmax|d” V’|.

i=l

2) Kullback—Leibler Divergence

D = (1/n) D7 D" di/ In(dy)/dy)).

i=1 j=1

3) Cosine Coefficient
1/2

Scos = (1/m) D, d”

i=1

C
Yi 5%i
E dy] d;
Jj=1

I]M

4) Intersection Similarity

Stater = (l/n) szln( ’.:;i’ A.\::,J)

i=1 j=1

Here, d; = [d}!, x’ , ..., di] is a real label distribution, and
d; =[dy',dy,...,dY] is arecovered latent label distribution.
The first two are distance metrics and the last two are simi-
larity metrics. Considering that the selected metrics all come
from different families, the selected metrics are significantly
different in both syntax and semantics.

Five baseline LE algorithms are employed for comparative
studies.

1) FCM [48] which employs fuzzy C-means clustering
technique to generate the membership degree of each
instance to each cluster and adopts fuzzy composition
to generate label distributions from the membership
degrees [suggested configuration: S = 2].

2) KM [49] which adopts kernel function to calculate
the distance between each instance and the center of
each class and generate the label distributions from the
distance.

3) LP [41] which employs iterative label propagation tech-
nique to generate label distributions [suggested config-
uration: balancing parameter a = (.5].

4) ML [39] which leverages feature manifold and label
manifold to generate label distributions [suggested con-
figuration: the number of neighbors K = ¢ + 1].

5) GLLE [34] which recovers label distributions via lever-
aging the topological information of the feature space
[suggested configuration: the parameter 1; and A, are
chosen among {102,107, ..., 100}].

Fig. 5 illustrates the performance of PENAD against five
baseline algorithms in terms of four evaluation metrics.
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For each evaluation metric, 1 denotes the larger the better and
J denotes the smaller the better. PENAD ranks /st in 94%
cases across four metrics. These results show that PENAD
is effective to recover latent label distributions in partially
labeled examples. In addition, the visualizations of the learned
latent label distribution in real-world PML datasets are given
in Fig. 6.

V. CONCLUSION

Partial multilabel learning aims to learn the multilabel
predictive model from PML datasets, in which each example
is associated with candidate labels but only a subset of
these labels is valid. Different from existing strategies, the
proposed approach PENAD considers the label distributions
in the training datasets. Since the label distributions are not
explicitly available in the training sets, PENAD recovers the
label distributions as well as induces the predictive model
simultaneously. The effectiveness of the proposed approach
is validated via the PML predictive experiments. In addition,
further experiments show the high quality of the recovered
label distributions and the effectiveness of adopting label
distributions for partial multilabel learning.

It is interesting to investigate effective ways to make full
use of the label distribution in PML. Furthermore, more LE
approaches need to be investigated when there are certain
structures in the partial multilabel sets of PML training exam-
ples. In the future, it is also important to explore other tech-
niques to leverage the recovered label distribution for PML.
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