
IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 1

Time-Efficient Identifying Key Tag Distribution in
Large-Scale RFID Systems

Yanyan Wang, Member, IEEE, Jia Liu, Member, IEEE, Zhihao Qu, Member, IEEE,
Shen-Huan Lyu, Member, IEEE, Bin Tang, Member, IEEE, and Baoliu Ye, Member, IEEE

Abstract—With the proliferation of RFID-enabled applications,
large-scale RFID systems often require multiple readers to ensure
full coverage of numerous tags. In such systems, we sometimes
pay more attention to a subset of tags instead of all, which are
called key tags. This paper studies an under-investigated problem
key tag distribution identification, which aims to identify which
key tags are beneath which readers. This is crucial for efficiently
managing specific items of interest, which can quickly pinpoint
key tags and help RFID readers covering these tags collaborate
to improve the tag inventory efficiency. We propose a protocol
called Kadept that identifies the key tag distribution by designing
a sophisticated Cuckoo filter that teases out key tags as well as
assigns each of them a singleton slot for response. With this
design, a great number of trivial (non-key) tags will keep silent
and free up bandwidth resources for key tags, and each key tag
is sorted in a collision-free way and can be identified with only 1-
bit response, which significantly improves the time efficiency. To
enhance the scalability and efficiency of Kadept for high key tag
proportions, we propose E-Kadept protocol, which accelerates the
identification process by designing an incremental Cuckoo filter
that reduces false positives and improves space efficiency. We
theoretically analyze how can we optimize protocol parameters of
Kadept and E-Kadept, and conduct extensive simulations under
different tag distribution scenarios. Compared with the state-of-
the-art, E-Kadept can improve the time efficiency by a factor of
1.75×, when the ratio of key tags to all tags is 0.3.

Index Terms—RFID, key tag distribution identification, time-
efficient.

I. INTRODUCTION

Radio Frequency IDentification (RFID) has brought great
benefits to a variety of applications, including but not limited
to warehouse management [2]–[8], human-machine interface
[9]–[13], object tracking and authentication [14]–[21]. In these
applications, each object is attached with an RFID tag that
has a unique ID to indicate the tagged object. The tag
communicates with an RFID reader through backscatter. Since
the communication distance between a reader and a tag is
limited to a few meters, with the proliferation of RFID-enabled
applications, multiple readers must be used to ensure the full
coverage of desired inventory zones.

In a large-scale RFID system with multiple readers, we
sometimes selectively focus on a subset of tags, referred to
as key tags, for monitoring or management. For example, in a

Yanyan Wang, Zhihao Qu, Shen-Huan Lyu, and Bin Tang are with the Key
Laboratory of Water Big Data Technology of Ministry of Water Resources,
Hohai University, Nanjing 211100, China. Email: {yanyan.wang, quzhihao,
lvsh, cstb}@hhu.edu.cn. Jia Liu and Baoliu Ye are with the State Key
Laboratory for Novel Software Technology, Nanjing University, Nanjing
210023, China. E-mail: {jialiu, yebl}@nju.edu.cn.

A preliminary version [1] of this paper appeared in IEEE/ACM IWQoS’24.

2k

1k
1t

2t
3t

4t5t

10t

4k

1R 2R

3R
4R

7t
8t

9t

11t

12t

13t

14t

15t

16t17t
18t

3k

5k
6k

7k
8k

Trivial tag Key tagReader

6t

Fig. 1: The system model of key tag distribution.

shopping mall with tens of thousands of goods, the staff might
need to conduct an inventory over a specific category of goods,
where the relevant tags are treated as key tags and the left are
trivial tags out of interest. In another example, given a limited
bandwidth resource, the shop owner would like to pay more
attention to valuable goods (key tags) rather than cheap ones in
a retail store [22]; a frequent check over key tags is necessary.
In such cases, fast identifying key tags’ distribution allows
only readers that cover key tags to zoom into the corresponding
regions to communicate with them, ensuring efficient key tag
management. For clarity, we present a toy example shown in
Fig. 1. If the distribution of key tags k1−8 is known, we can
schedule readers R1 and R3 to work concurrently, with each
of them handling only the key tags that it covers. However, if
we do not have this distribution knowledge, all readers R1−4

need to work in a round-robin scheduling, with each reader
querying key tags multiple times.

In this paper, we study the problem of key tag distribution
identification that quickly explores which key tags are beneath
which reader’s coverage, with the knowledge of all tag IDs
a priori. This information plays a crucial role in various
inventory operations. For example, it can help detect missing
key tags [23] without the assumption that each reader knows its
local tag distribution. It can also facilitate key tags information
collection [24] by appropriately scheduling multiple readers
that cover key tags.

An intuitive solution to this problem is to identify the dis-
tribution of all tags by running the tag identification protocols
[25], [26] or the tag distribution identification protocol IB
[27]. However, these approaches suffer from long time delays
because they require all tags (including a great number of
trivial tags) to transmit data, which is a waste of bandwidth
resources. Besides global identification, tag polling is a more
efficient solution: each reader just in turn broadcasts each
key tag’s ID to activate the key tag (if exist), which avoids
the tag competition caused by trivial tags. However, this

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 2

solution requires transmitting key tags’ IDs and breaches the
privacy, which is forbidden in some privacy-sensitive RFID
systems [28], [29]. The IPP protocol, proposed in [30], is an
advanced polling protocol that achieves remarkable efficiency
by reducing the polling vector from 96 bits to only 1.6 bits.
However, in our problem, each reader still needs to poll all tags
to identify key tags. The state-of-the-art unknown tag identi-
fication protocol EUTI [31] can be adapted for our problem
by first deactivating trivial tags and then collecting key tags.
Nevertheless, it still incurs additional time overhead to resolve
collisions among key tags after trivial tag elimination.

In light of this, we propose a key tag distribution
identification protocol (Kadept), which targets at quickly iden-
tifying the distribution of key tags, without transmitting any
tag IDs. Kadept consists of four operations: 1) Filtering. It
constructs a Cuckoo filter to tease out key tags, avoiding
interference from trivial tags. 2) Assigning. It assigns a unique,
continuous slot for each key tag to make key tags respond
to the reader’s query without time waste. 3) Separating. It
leverages flag technology to let each tag know whether it is a
key tag or not so that key tags can be appropriately managed
in subsequent inventory operations. 4) Identifying. It identifies
key tag distribution: non-conflicting tags are identified in
parallel, while conflicting tags are scheduled collision-free.

While Kadept efficiently identifies key tag distribution under
low key tag densities, its performance degrades with increas-
ing key tag sizes, potentially limiting its ability to provide
real-time support for upper-level applications. Therefore, we
propose an enhanced version of Kadept, called E-Kadept. In
E-Kadept, we design an incremental Cuckoo filter with a lower
false positive rate and higher space efficiency compared to the
Cuckoo filter, enabling E-Kadept to maintain Kadept’s core
functionalities while further improving time efficiency.

We theoretically analyze how can we optimize the proto-
col parameters of Kadept and E-Kadept, and evaluate their
performance via extensive simulations. The results show that
both our protocols are far superior to the baseline IB [27],
the polling protocol IPP [30], and an optimized version of the
state-of-the-art unknown tag identification protocol EUTI [31].
For instance, in a multi-reader RFID system with 10,000 tags
(7000 trival tags and 3000 key tags), E-Kadept and Kadept
reduce the execution time of EUTI from 14s to 5.1s and 7.6s,
respectively, producing 1.75× and 0.84× performance gains.

The remainder of this paper is organized as follows. Section
II gives the preliminary. Section III details the Kadept protocol.
Section IV presents the theoretical performance analysis of
Kadept. Section V describes the E-Kadept protocol. Section
VI analyzes the optimal parameters of E-Kadept. Section VII
conducts extensive simulations to evaluate the performance
of Kadept and E-Kadept. Section VIII briefly introduces the
related work. Finally, Section IX concludes this paper.

II. PRELIMINARY

A. System Model

We consider a large-scale RFID system comprising a back-
end server, multiple readers, and a great number of tags. Each
tag has a unique ID that exclusively indicates the item it is

attaches to. The tags use backscattering to communicate with
readers, limiting the communication distance between a reader
and a tag to a few meters. To cover all tags in the surveillance
regions, multiple readers are deployed with many overlapped
interrogation regions and interference regions. Each reader
covers a portion of the tags, while each tag may be covered
by one or more readers. The server maintains an item list of
all tag IDs but has no information about the tag distribution.

The communication between the readers and tags follows
Reader Talks First mode as defined in C1G2 standard [32].
In this mode, one reader initiates a query with a continuous
RF waveform (CW), energizing the tags it covers. The tags
then transmit their information by reflecting the modulated
CW back to the reader. We use tID and ts to represent the
lengths of two types of time slots: the former is for transmitting
tag ID, and the latter is for transmitting 1-bit information.
Similar to [33], the readers broadcast ACKl to label tags. The
time for transmitting an ACK is referred to as tack.

B. Problem Definition

Consider a multi-reader RFID system. The set of readers in
the system is denoted as R = {R1, . . . , Rm}. The topology
of readers can be depicted as a graph G = (R, E), where E
is the set of edges each connecting two readers which have
overlapped monitor areas; these two readers are neighbors. For
reader Ri(Ri ∈ R, 1 ≤ i ≤ m), its neighbor and non-neighbor
reader sets are denoted as Γ(Ri) and Υ(Ri), respectively.
The tags are divided into two sets: the key tag set K =
{k1, . . . , kx} and the trivial tag set T = {t1, . . . , ty}. Symbol
Ki represents the set of key tags under the coverage region of
Ri. Since each contentious key tag in the overlapped region
is covered by two or more readers, we have

⋃m
i=1 Ki = K

and |Ki

⋂
Kj | ≥ 0 (i ̸= j). With the knowledge of reader

topology and tag IDs, this paper is to identify which key tags
are beneath which readers, i.e., identifying Ki for Ri.

C. Challenges and Design Guideline

To rapidly determine which key tags within a reader’s cov-
erage, it is essential to eliminate the interference of trivial tags
and collect the responses of key tags in a time-efficient manner.
The key challenges of key tag distribution identification are:
1) eliminating trivial tags efficiently, and 2) collecting key tag
responses effectively.

To address these challenges, our design focuses on isolating
key tags from a large RFID tag population and collect their
distribution across multiple readers with minimal latency and
memory use. Cuckoo filters are well suited for this task due to
their compact fingerprint-based representation: each key tag’s
ID is hashed into a small fingerprint, which is then inserted
into one of a small number of candidate buckets, maintaining
a filter size approximately proportional to the number of
key tags (e.g., ∼1000 buckets for 1000 key tags in our
simulations). This near-one-to-one mapping ensures efficient
use of resources while assigning slots for key tag identification.
However, due to its probabilistic nature, standard Cuckoo
filters may suffer from fingerprint collisions, making one-to-
one slot assignments unreliable. To overcome this, we propose

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 3

a new construction scheme that filters out trivial tags while
assigning each key tag a unique slot within a continuous slot
range, ensuring sequential responses.

In contrast, Bloom filter variants, such as Counting Bloom
Filters and Cascade Filters, rely on multiple hash functions to
reduce false positives, necessitating a larger number of slots
(e.g., several times the number of key tags). This leads to
many empty slots, increasing memory overhead and reduc-
ing efficiency in resource-constrained RFID readers. Cascade
Filters, optimized for hierarchical filtering, require complex
multi-level structures that are less suited for our single-pass
design focused on immediate slot assignment.

Quotient Filters, like Cuckoo filters, use fingerprints for
compact storage, but they require additional metadata to man-
age collisions, increasing storage demands. Moreover, their
insertion process is more complex, involving slot shifting that
adds computational overhead, whereas Cuckoo filters offer a
simpler, faster approach tailored to our assigning operation’s
need for quick slot allocation.

In summary, while Counting Bloom Filters, Cascade Filters,
and Quotient Filters could potentially be adapted for key
tag distribution identification, Cuckoo filters strike an optimal
balance of memory efficiency, time efficiency, and simplicity
for our protocols.

TABLE I: Key Notations

Symbols Descriptions

R the set of readers
K the set of key tags
T the set of trivial tags
m the number of readers
x the number of key tags
y the number of trivial tags
h the number of hash functions
hi the ith hash function
Fj the fingerprint of the key tag kj
d the fingerprint length

∆F the difference between consecutive fingerprints
∆d the bit length of the maximum fingerprint difference
α the given negative indicator threshold
θ the number of identified key tags per unit time

III. KADEPT PROTOCOL

A. Overview

Kadept aims to fast identify key tag distribution by simul-
taneously eliminating trivial tag interference and assigning
a unique transmission slot to each key tag without extra
cost. To achieve this, Kadept constructs a specialized Cuckoo
filter that not only filters trivial tags but also assigns each
inserted key tag a unique slot. Due to false positives in
Cuckoo filters, some trivial tags may pass the filter and
respond to a reader alongside key tags, leading to a failure
in identifying the distribution of these collided key tags. To
ensure complete identification, Kadept implements an iterative
multi-round execution, as shown in Fig. 2. Each round consists
of three phases: constructing phase that constructs a Cuckoo

Kadept: Iterative Identifying Process

Multiple Rounds: Three phases per round

Constructing Phase
Each reader constructs a Cuckoo filter with unidentified key tags

Filtering-assigning-separating Phase
Each reader filters trivial tags, assigns unique continuous slots

to key tags, and separates key tags from trivial ones

Identifying Phase
Each reader identifies key tag distribution within their own

coverage area

Global Key Tag Identification
Readers exchange and consolidate findings to achieve comprehensive

global key tag identification

Fig. 2: Overview of the Kadept Protocol.
filter using key tags; filtering-assigning-separating phase that
utilizes the Cuckoo filter to filter trivial tags, assign each
key tag a unique and continuous slot, and separate key tags
from trivial tags; identifying phase that determines the readers
covering each key tag and the key tags covered by each reader
by checking the assigned slot statuses. In Kadept, if a reader is
sure about whether a key tag is under its coverage or not, we
say that this key tag is identified by the reader, or unidentified
otherwise. After all readers identify their respective key tags,
they exchange and consolidate their results to determine the
global key tag distribution. Details are given below.

B. Constructing Phase

Consider an arbitrary reader Ri. Initially, Ri has no knowl-
edge of its local key tags and thus uses all key tags to construct
a Cuckoo filter, denoted by CF . The basic unit of CF is
called a bucket, and CF consists of an array of buckets. CF
stores key tags’ fingerprints to reduce the filter size as well
as avoid leaking key tag IDs. In the construction process,
however, CF temporarily stores tag IDs, to restore and rehash
an original key tag in a bucket to find its alternate location.
Next, we design a new construction scheme to extend CF
beyond filtering to perform slot assignment operations. By
doing this, Kadept ensures the inserted key tags can respond to
the reader one after another without empty or collision slots.

For a key tag kj(kj ∈ K, 1 ≤ j ≤ x), the reader calculates
its constant-sized fingerprint Fj and the indexes Hℏ

j (1 ≤ ℏ ≤
h) of the h candidate buckets as follows:

Fj = H(IDkj
, sf) mod 2d

Hℏ
j = H(IDkj

, sℏ) mod fCF ,
(1)

where H(·) is hash function. Since each tag actually holds one
hash function, which is shared by readers and tags, the reader
broadcasts h hash seeds to tags to mimic h hash functions.
sf and sℏ(1 ≤ ℏ ≤ h) are the hash seeds used to calculate
the fingerprints and candidate buckets, respectively; fCF and
d are the lengths of CF and its fingerprint, respectively. Let
Hj be the candidate bucket set of kj , and we have Hj =
{H1

j , · · · , Hh
j }. Before inserting kj into CF , we classify the

fingerprints of all key tags and then insert kj following this

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 4

classification. According to Eq. (1), the fingerprints in the
set {0, . . . , 2d} can be divided into three categories: useless
fingerprints mapped by no key tags, singleton fingerprints
mapped by exactly one key tag, and collision fingerprints
mapped by more than one key tag. We refer to the key tags
with the same fingerprint as the same group. The reader Ri

inserts kj into CF in terms of the status of Fj , and the specific
steps are as follows.

Fj is a singleton fingerprint. If only some candidate
h buckets are assigned tags, Ri randomly selects an empty
bucket and inserts kj by putting IDkj

into it. Otherwise, Ri

picks one of the h buckets at random and inserts kj into it,
replacing a key tag previously in this bucket.

Fj is a collision fingerprint. As described above, key tags
with the same fingerprint belong to the same group. With
the h hash functions, Ri can calculate all possible buckets
that are selected by the other tags except kj from the same
group. Let Bj represent the set of these possible buckets. If
Hj ⊆ Bj , the insertion failures, then we will reconstruct CF .
Otherwise, Ri removes the same bucket(s) in the two sets from
Hj , and the candidate bucket set of kj changes to Hj − Bj ;
where 1 ≤ |Hj − Bj | ≤ h and | · | represents the number of
items in a set. Then Ri inserts kj into one of its candidate
buckets according to the insertion steps described when Fj is
a singleton fingerprint.

For the previously existing key tag that makes room for the
new one, the reader uses the same insertion steps to relocate it.
The reinsertion process will continue until the last key tag that
is kicked out successfully maps to an empty bucket within the
given maximum loops or fails to insert into CF . If the last key
tag to be inserted can map to an empty bucket within the given
maximum loops, the reader puts each key tag’s fingerprint
into its bucket to replace of ID. Otherwise, we update fCF to
fCF + nl and reconstruct CF using the new filter size, where
nl is the number of tags that fail to insert CF .

For empty buckets, the reader fills them with a useless
fingerprint. If none are available, the reader inserts a singleton
fingerprint that does not belong to any key tag mapping to this
bucket. For example, if the second bucket of CF is empty, it is
filled with a singleton fingerprint that does not belong to any
key tag with a hash value of 2, which also maps to this bucket.
This strategy ensures that each key tag is inserted into exactly
one of its candidate buckets, enabling a unique slot assignment
for each key tag. So far, CF is successfully constructed, and
its optimal parameters will be analyzed in Section IV.

Our proposed protocol, Kadept, shines in that it is able
to filter interference tags and assign each key tag a unique
and continuous slot simultaneously by designing a new con-
struction scheme for the Cuckoo filter. However, traditional
filters, such as the widely used Bloom filer, only function
as a filter. After filtering, the reader has to issue a series of
slotted frames to check each key tag’s response in its randomly
selected slot, which retards the identification process caused
by useless (empty and collided) slots. Although collision
resolution methods can mitigate this, they require additional
processing time that our approach avoids.

0011 1011 0010 0101 1011 0110 ...:-wo

: 0011 1100 0010 1011 0110 1011 ...

1k 2k jk

1k 2k jk

1 1011F 

2 1011F 

1 2,jF F FWhen

0110jF 

1

1 1011F 

2 1011F 

1 2jF F F When

1011jF 

2

Fig. 3: The construction scheme with and without considering
the interferences of collision fingerprints.

C. Filtering-assigning-separating Phase

Filtering. After getting CF , the reader broadcasts it and
the construction parameters ⟨fCF , s1−h, d, sf ⟩, and the useless
fingerprint Fu (if it exists) to tags. Upon receiving this request,
each tag first calculates its fingerprint and h candidate buckets
according to Eq. (1). Then these h buckets are read: if the
fingerprint in only one bucket matches, the tag passes CF and
keeps active; otherwise, it keeps silent.

Assigning. Since the Cuckoo filter has no false negatives,
all key tags will keep active. Consider the key tag kj . Let SIj
be the slot index of kj . We denote the number of buckets that
store useful fingerprints preceding the matched bucket of kj
as bj . According to CF , kj can get bj , and set SIj = bj + 1.
Note that each active tag only has one slot index because each
key tag has one matched bucket; the false positive trivial tags
that map to more than one matched bucket will keep silent.

Separating. To achieve the precise management of key tags
without the interference of trivial tags, Kadept separates key
tags from trivial tags by setting a flag for each tag. Specifically,
Kadept lets each tag keep a flag with a value that is initially
set to 0. A tag that cannot pass CF updates its flag to 1 before
keeping silent, indicating that it is a trivial tag. After that, the
reader broadcasts the flag 0 and then queries tags; only key
tags will respond to the reader when the flag is 0.

Fig. 3 illustrates how collision fingerprints affect kj’s slot
assignment. CF-wo is constructed without considering the
interference of collision fingerprints, that is, all key tags are
inserted into CF-wo in the same way as key tags with single-
ton fingerprints. Additionally, the useless fingerprint 0010 is
used to fill empty buckets. When Fj is the singleton fingerprint
0110, after receiving CF-wo, kj can find its matched bucket
and get bj = 4. Then it sets its slot index to SIj = bj+1 = 5.
However, when Fj = F1 = F2 is the collision fingerprint
1011, and k1, k2 map to two candidate buckets of kj , kj is
unsure whether SIj should be set to 2 or 5. Even if kj responds
in either the second, the fifth, or both slots, the reader cannot
identify which key tag caused the response when two or more
key tags respond in the same slot. In contrast, in CF , kj is
inserted into one of its candidate buckets that are not mapped
by the other tags from its group. The proposed construction
scheme enables CF to assign a unique slot for each inserted
tag in addition to filtering interference tags.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 5

D. Identifying Phase
This phase describes how readers identify noncontentious

key tags in parallel first and then identify contentious key tags
based on a schedule.

1) Identifying Noncontentious Key Tags: In practice, over-
lapped zones are usually smaller than interrogation zones, and
the majority of tags are noncontentious tags. To accelerate
the identification process, readers first concurrently identify
noncontentious key tags; only noncontentious tags can listen
to readers and participate in this step due to reader collisions.

Consider the reader Ri. It identifies the noncontentious key
tags that it covers by constructing two arrays Ei and Ai of
length li. The first array Ei is constructed by the expected
responses from the tags that pass CF . From the filtering step
in III-C, we know that the key tags used to construct CF and
the active false positive trivial tags will pass CF . According to
tags’ responses, the slots can be divided into three categories:
empty slots picked by no tags, singleton slots picked by one
tag, and collision slots picked by two or more tags. They are
symbolized by ‘0’, ‘1’, and ‘c’, respectively. Since Ri has prior
knowledge of all active tags, it can predict the expected slot
category information of tags that pass CF , and accordingly
generates Ei: each element in Ei records each slot’s expected
category information. Note that Ri virtually constructs Ei

without taking any communication overhead.
The second array Ai is built on tags’ actual responses.

Since each tag gives a 1-bit response, the actual slots follow
into two categories: empty slots picked by no tags, non-empty
slots picked by one or more tags. They are symbolized by ‘0’
and ‘1’, respectively. Recall that each tag that passes CF gets
its slot index and keeps active. Then, Ri constructs Ai: each
element in Ai records each slot’s actual category information.

Comparing Ei and Ai, Ri can identify whether a tag is
or not its local tag. Two slots with the same index in Ei

and Ai are called a slot pair. For a slot pair ⟨a1, a2⟩, a1 and
a2 denote the slot categories in Ei and Ai, respectively. By
checking each slot pair, Ri updates three tag sets that it stores:
the local noncontentious key tag set KLn

i , the unidentified
noncontentious key tag set KUn

i , and the active noncontentious
trivial tag set TAn

i . These sets initially contain zero key tags,
all key tags, and all false positive trivial tags, respectively. By
analyzing li slot pairs, Ri acts as follows.

• ⟨1, 1⟩. This slot pair indicates that the key tag that is
expectedly in this slot replies. The reader sends ACKl to label
it, puts it into KLn

i , and removes it from KUn
i . The labeled

key tags keep silent after this round.
• ⟨1, 0⟩ and ⟨c, 0⟩. These two kinds of slot pairs can be

used to identify the noncontentious key tags that are not in
the coverage regions of Ri. Ri removes the corresponding
key tags from KUn

i and the trivial tags from TAn
i .

• ⟨c, 1⟩. This slot pair cannot be served as the vehicle
to identify key tags. Because the reader Ri cannot infer the
response(s) comes from which tag(s).

After the first round, most of the noncandidate key tags
and the false positive trivial tags are removed from KUn

i and
TAn
i , respectively. With the updated KLn

i , KUn
i , and TAn

i , Ri

executes the above three phases to identify the unidentified key
tags. The process is repeated for several rounds and finishes

L
ook U

p

0011 0110 0010 0101 1011 1101 1010 1110 0110:

1 1 1 0 1 0 0 0

Insert

1 2 3 4 5 6 7 8

1 c 1 1 c 1 c c

Actual
Responses

Expected
Responses

0011 0110 0010 0101 1011 1101 1010 1110 0110:

...

Key tag Trivial tag

L
ook U

p

1,1 

1k 2k 3k 4k 5k 6k 7k 8k

1k 2k 3k 1t 2t 3t 4t 5t

1t 2t 3t 4t 5t

1k 2k 3k 4k 5k 6k 7k 8k

9t 13t 18t

1 :A

1 :E

Fig. 4: An illustration of the execution of Kadept.
when there are no ⟨c, 1⟩ slot pairs in one round. After that,
the noncontentious key tags are all identified.

2) Identifying Contentious Key Tags: Readers can identify
contentious key tags by working in different time windows
with a specific scheduling algorithm, such as Colorwave [34].
In this scenario, each identification round consists of multiple
schedules, and the readers inside the same schedule work in
parallel. Consider the reader Ri. In one schedule, Ri maintains
another three tag sets: the local contentious key tag set KLc

i ,
the unidentified contentious key tag set KUc

i , and the active
contentious trivial tag set TAc

i . They are initialized to empty
set, K−

∑m
i=1 K

Ln
i , and

⋃|Γ(Ri)|+1
θ=1 TAn

θ , respectively; where
Rθ ∈ {Γ(Ri)

⋃
Ri}. Similar to the method used for identi-

fying noncontentious key tags, Ri identifies contentious key
tags by constructing and comparing two arrays. In addition, the
labeled contentious key tags will keep silent after this round
while not this schedule. In this way, each reader can identify
all the contentious key tags it covers. Furthermore, by sharing
information with other readers, each reader can know that each
of its local contentious key tags is covered by which readers.

E. Case Study

For clarity, we now use the scale-down RFID system shown
in Fig. 1 to illustrate the execution process of one round in
Kadept. We here only consider the case that the readers R1−4

concurrently identify the noncontentious key tags k1−3 and
k7−8, and we detail the identification process of R1, as seen
in Fig. 4. In the first round, R1 constructs the Cuckoo filter
CF using all key tags k1−8, since it has no prior knowledge
about tag distribution. KLn

1 , KUn
1 , and TAn

1 are initiated to
∅, {k1, k2, · · · , k8}, and {t2, t4, t9, t13, t18}, respectively. R1

inserts k1−8 into CF with three specified hash functions first
and then replaces the IDs of k1−8 with their fingerprints.
Besides, R1 fills the empty bucket with the useless fingerprint
’1010’. After getting CF , R1 broadcasts it and the construction

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 6

parameters in the system. With the received information, the
tags k1−3 and t1−5 that can listen to R1 check whether they
can pass CF or not. The key tags k1−3 and the false positive
trivial tag t2 find their own fingerprint in one of their three
candidate buckets, besides, their fingerprints are not identical
with ’1010’, then they pass CF . On this basis, each tag that
passes the filter sets its slot index. For k1, it sets its slot index
to 3 on account of the observation that it maps to the third non-
empty bucket of CF , and replies R1 in the third slot. Similarly,
k2 and k3 reply R1 in the first and fifth slot, respectively.
According to the actual slot status, R1 constructs A1. With
the information of key tags k1−8 and trivial tags t1−18, R1

constructs E1. Comparing E1 and A1, R1 achieves eight slot
pairs, based on which it labels tags and updates tag sets. For
example, according to the first slot pair ⟨1, 1⟩, R1 infers k2
that expectedly maps to this slot is under its nonoverlapped
region. It transmits ACKl to label k2, adds k2 to KLn

1 , and
removes k2 from KUn

1 . After this round, KLn
1 , KUn

1 , and TAn
1

update to {k1, k2}, {k3, k4}, and {t2, t18}, respectively.

IV. PERFORMANCE ANALYSIS OF KADEPT

We first analyze the execution time of Kadept, denoted by
TKadept, and then give the optimized parameters that can meet
the given accuracy requirement and minimize the average time
cost. From the global view of Kadept, TKadept consists of two
parts: 1) The time Tn for readers to identify noncontentious
key tags in parallel, and 2) the time Tc for readers to
identify contentious key tags based on the schedule algorithm
Colorwave. According to Kadept, we have Tn = max{Ti}
(1 ≤ i ≤ m) and Tc =

∑C
j=1 max{T j

i }, where C is the
number of schedules. Consider the reader Ri. In the τ th
(1 ≤ τ ≤ wi) round, the time for Ri transmitting CFτ is
⌈ fτ×dτ

96 ⌉tID, and the time for active tags transmitting one bit is
nkτ

×ts; where wi is the number of rounds, fτ is the length of
CFτ , and nkτ is the number of key tags used for constructing
CFτ . Besides, in each slot, the reader transmits an ACK to
instruct the next action of tags in the corresponding slot.
Hence, we have Ti =

∑wi

τ=1{⌈
fτ×dτ

96 ⌉tID+nkτ
×(ts+tack)}.

We can achieve TKadept by adding Tn and Tc. Because each
reader identifies noncontentious and contentious key tags in
the same way, without loss of generality, we only analyze the
time for Ri identifying noncontentious key tags.

A. Performance Efficiency

Due to the false positive of Cuckoo filter, some trivial tags
may keep active and participate in the identification process,
which causes the reader to fail to identify the key tags that map
to collided buckets. We consider the worst case that each false
positive trivial tag results in a key tag not being identified, and
let the number of false negative key tags meet the following
constraint:

Ifn =
nfp

nk
≤ α, (2)

where Ifn is the false negative indicator, nfp and nk are
the numbers of false positive trivial tags and key tags. The
parameter α (0 < α < 1) is the indicator threshold that limits

false positive trivial tags, which affects the number of key tags
that may remain unidentified in a single round. It determines
the minimum fingerprint length d for the Cuckoo filter. Since
α defines only the lower bound for d, setting it too small
may lead to an unnecessarily large d, potentially exceeding its
optimal value, which will be analyzed shortly. Therefore, we
recommend setting α to a moderate value (e.g., α = 0.1) to
ensure that the optimal fingerprint length remains achievable.

In one round, we aim to optimize the number of key tags to
be identified and the number of false positive trivial tags to be
filtered, which together minimize the total identification time.
Recall that key tags can be identified by the slot pairs ⟨1, 1⟩,
⟨1, 0⟩, and ⟨c, 0⟩, and the false positive trivial tags can be
filtered by the slot pairs ⟨c, 0⟩. We denote E11, E10, and Ec0

as the expected numbers of tags in ⟨1, 1⟩, ⟨1, 0⟩, and ⟨c, 0⟩,
respectively. For one round of Ri with execution time t, the
identification efficiency, denoted by θ, is defined as the number
of identified key tags per unit time:

θ =
E11 + E10 + Ec0

t
, (3)

where t = {⌈ fCF×d
96 ⌉tID + nk × (ts + tack)}.

We take the following lemmas to analyze θ. Lemma 1 gives
the expected values of E11, E10, Ec0, and pf , where pf is the
false positive ratio of CF .

Lemma 1: The expected values of E11, E10, Ec0, and pf
are:

E11 = nl
k(1−

pf
nk

)nt

E10 = (nk − nl
k)(1−

pf
nk

)nt

Ec0 = (nk − nl
k){(nt − nl

t)
pf
nk

+

nt−nl
t∑

j=1

(
nt − nl

t

j

)
(
pf
nk

)j(1− pf
nk

)nt−nl
t−j}

pf =
h

2d
(1− h− 1

2d
),

(4)

where nk, nt, nl
k, and nl

t are the numbers of key tags, trivial
tags, local key tags, and local trivial tags, respectively.

Proof: In this round, the reader first constructs CF using
the nk unidentified key tags and then broadcasts it to all tags.
With the knowledge of nt trivial tags, the reader can predict the
false positive trivial tags that will pass CF ; by incorporating
the tags’ real responses, it constructs the corresponding slot
pairs. A slot pair ⟨1, 1⟩ occurs when a bucket of CF is inserted
by one local key tag, with no trivial tag(s) mapping to it. Recall
that empty buckets are filled with the useless fingerprint, so
the corresponding empty slots are skipped. Consequently, the
slot frame length, denoted by f , is equal to the number of
nonempty buckets in CF , that is, f = nk. Let p11 denote the
probability of ⟨1, 1⟩ occurring. In the f slots, the probability
of a key tag is assigned to one slot is 1

f , and the probability
of that slot is mapped by a trivial tag is pf

f . Thus, we have:

p11 = (1− pf
f
)nt × nl

k

f
= (1− pf

nk
)nt × nl

k

nk
. (5)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 7

For a bucket, the probability that a tag that is not inserted
into this bucket and returns a false-positive successful match
is at most 1/2d. After making h such comparisons, the
probability that only one successful match is:

pf =
h

2d
(1− 1

2d
)h−1 ≈ h

2d
(1− h− 1

2d
). (6)

Hence, we have the expected number E11 of identified key
tags in slot pairs ⟨1, 1⟩:

E11 = p11 × f = nl
k(1−

pf
nk

)nt , (7)

we will give a new cardinality estimation method to estimate
the values of nl

k and nl
t shortly.

The slot pair ⟨1, 0⟩ occurs when one bucket is inserted by
only one nonlocal key tag. The probability that ⟨1, 0⟩ occurs,
denoted by p10, can be derived:

p10 =
nk − nl

k

nk
(1− pf

nk
)nt . (8)

With p10, we can calculate the expected value of E10:

E10 = (nk − nl
k)(1−

pf
nk

)nt . (9)

The slot pair ⟨c, 0⟩ occurs when one bucket is inserted
by one nonexclusive key tag and mapped by one or more
false positive trivial tags in TAn

i . Similarly, we can derive the
probability that ⟨c, 0⟩ occurs, denoted by pc0:

pc0 =
nk − nl

k

nk

nt−nl
t∑

j=1

(
nt − nl

t

j

)
(
pf
nk

)j(1− pf
nk

)nt−nl
t−j .

(10)
Since there is one key tag and one or more trivial tags in ⟨c, 0⟩,
we can derive the expected value of Ec0:

Ec0 = nk
nk − nl

k

nk

nt−nl
t∑

j=1

(
nt − nl

t

j

)
(j + 1)(

pf
nk

)j(1− pf
nk

)nt−nl
t−j

= (nk − nl
k){(nt − nl

t)
pf
nk

+

nt−nl
t∑

j=1

(
nt − nl

t

j

)
(
pf
nk

)j(1− pf
nk

)nt−nl
t−j}.

(11)

B. The Parameters and Reconstruction of Cuckoo Filter

1) The Parameters of Cuckoo Filter: Lemma 2 gives the
optimized construction parameters of the Cuckoo filter CF
that ensures the maximal θi in Eq. (3).

Lemma 2: Given the false negative indicator α, the values
of h, fCF , and d are:

h = ⌈lnnk⌉
fCF = nk + 1

d = max (θ) s.t.
h

2d
(1− h− 1

2d
) ≤ αnk

nt
,

(12)

where fCF is the initial size of CF .
Proof: To find the optimal values of fCF , h, and d that

maximize θ, we analyze the constrain conditions of these three

0

1

2

3

N
u
m

b
er

s
o
f

co
n
st

ru
ct

io
n
 a

n
d
 a

d
d
in

g
 b

u
ck

et
s

0 20 40 60 80 100

Number of executions

Reconstruction

Adding buckets

Fig. 5: An illustration of the reconstruction of Cuckoo filter.

parameters. To ensure all nk key tags can be successfully
inserted into CF , the minimal value of fCF is nk, that is,
fCF ≥ nk. Further, we derive the requirement that h needs to
satisfy to insert nk key tag into fCF buckets. For one bucket,
the probability that no tag is mapped to it by using h hash
functions is (1− 1

fCF
)nkh, and the number of empty buckets

is fCF (1− 1
fCF

)nkh. Let fCF (1− 1
fCF

)nkh < 1, we have the
second constrain condition h > fCF ln fCF

nk
. Besides, with Eq.

(6), we can derive the number of false positive tags nfp:

nfp = nt × pf =
nth

2d
(1− h− 1

2d
). (13)

From Eq. (2) and Eq. (13), we know that the length d of the
fingerprint needs to satisfy h

2d̂
(1 − h−1

2d̂
) ≤ αnk

nt
. With the

above three constrain conditions, we can use one optimization
function, such as fmincon, to solve the optimal solution of Eq.
(3). The result is fCF = nk+1, h = ⌈lnnk⌉, and d = min (d̃),
where d̂ meets h

2d̃
(1 − h−1

2d̃
) ≤ αnk

nt
. Moreover, the optimal

solution is not influenced by the initial values of fCF , h, and
d. The initial value of d is set to ⌈log2(nk)⌉ for readers have
no prior knowledge about the numbers of their local key tags
and local trivial tags.

2) The Reconstruction of Cuckoo Filter: With the optimal
parameter settings, we study the construction of Cuckoo filter,
as one reader may require multiple attempts to successfully
construct the filter. Fig. 5 plots the reconstruction of Cuckoo
filter in 100 independent simulations, where nk, nt, nl

k, and nl
t

are set to 500, 2000, 50 and 200, respectively. We observe that
the number of reconstructions is zero in most cases, that is,
a reader typically constructs the Cuckoo filter successfully on
the first try. Even when reconstruction is needed, the number
of reconstructions and additional buckets required is minimal.
This suggests that the reader can efficiently construct Cuckoo
filter with the optimal parameter settings.

C. Cardinality Estimation

To achieve the optimal Cuckoo filter construction parame-
ters in Lemma 2, one reader needs to estimate the cardinalities
nl
k and nl

t for the sets of local key tags and still active trivial
tags. However, utilizing the separate tag cardinality estimation
protocols will increase the execution time. We propose an
estimation scheme without extra time consumption by using
the information identified. Consider any arbitrary round and

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 8

the reader Ri. After this round, Ri precisely counts the number
of slot pairs ⟨1, 1⟩, ⟨1, 0⟩, and ⟨c, 0⟩, denoted as n11, n10, and
nc0, respectively. Since one key tag corresponds to exactly one
slot pair, the number of key tags that map to ⟨1, 1⟩, ⟨1, 0⟩, and
⟨c, 0⟩ is equal to n11, n10, and nc0, respectively. However, for
the slot pair ⟨c, 0⟩, both one key tag and one or more trivial
tags map to it. We denote the number of trivial tags mapping
to ⟨c, 0⟩ as nt

c0. With n11 and Eq. (23), we have:

nl
k = n11e

pfnt
nk . (14)

Based on this, we derive the expected number of trivial tags
in slot pairs ⟨c, 0⟩, denoted by Et

c0:

Et
c0 = nk

nk − nl
k

nk

nt−nl
t∑

j=1

(
nt − nl

t

j

)
j(

pf
nk

)j(1− pf
nk

)nt−nl
t−j

= (nk − nl
k)(nt − nl

t)
pf
nk

.

(15)

With nl
k, nt

c0, and Et
c0, we can calculate nl

t:

nl
t = nt −

nt
c0nk

pf (nk − nl
k)

. (16)

According to the obtained parameters, the reader can update
the parameters used in the next round to identify the left key
tags. Lemma 3 gives how to achieve the updated nk, nt, nl

k,
and nl

t, which are denoted as n̂k, n̂t, n̂l
k, and n̂l

t, respectively.
Lemma 3: The expected values of n̂k, n̂t, n̂l

k, and n̂l
t are:

n̂k = nk − n11 − n10 − nc0

n̂t = nfp − nt
c0

n̂l
k = nl

k − n11

n̂l
t = nl

t.

(17)

Proof: Since each of the slot pairs ⟨1, 1⟩, ⟨1, 0⟩, and ⟨c, 0⟩
corresponds to an identified key tag, the number of key tags
that are removed from KUn

i is n11+n10+nc0. Therefore, n̂k

is equal to nk−n11−n10−nc0. Moreover, after filtering, the
nfp trivial tags that are still active are further identified by slot
pairs ⟨c, 0⟩ and removed from TAn

i . Hence, the number n̂t of
active trivial tags is nfp − nt

c0. Remember that the local key
tags that map to ⟨1, 1⟩ will be labeled and do not participate in
the following identification. Therefore, the expected value of
n̂l
k is nl

k − n11. Since the reader cannot infer the information
of local trivial tags from ⟨c, 1⟩, all the local trivial tags keep
active, we have n̂l

t = nl
t.

V. ENHANCED KADEPT PROTOCOL

Kadept, while efficient in identifying the distribution of key
tags, experiences performance declines as the number of key
tags increases. This is because the Cuckoo filter used in Kadept
expands with the number of key tags, requiring more time for
the reader to transmit the filter. To enhance Kadept’s scalability
and efficiency, we propose an incremental Cuckoo filter that
stores the differences between consecutive fingerprints of key
tags instead of the full fingerprints, along with the index of
the hash equation used for successful insertions. This filter

is more space-efficient, has a lower false positive ratio, and
grows more slowly than the traditional Cuckoo filter. Building
on the new filter, we further propose the enhanced Kadept
protocol, referred to as E-Kadept. In what follows, we first
present the incremental Cuckoo filter and then describe the
E-Kadept protocol in detail.

A. Incremental Cuckoo Filter

In Kadept, the false positive ratio pf of the Cuckoo filter
CF it constructs increases with the number of hash equations
h and decreases with the fingerprint length d. To minimize pf ,
we can decrease h and increase d. However, this trade-off leads
to higher storage overhead for CF . Reducing h increases the
number of buckets to ensure that all key tags are successfully
inserted into CF , while increasing d raises the number of bits
stored in each bucket. This finally increases the time for the
reader to transmit CF . To address this challenge, we design
the incremental Cuckoo filter, denoted by ICF . ICF stores
the difference between consecutive fingerprints instead of the
full fingerprints themselves, effectively reducing the size of
each bucket. Furthermore, to filter out most non-key tags and
assign a unique slot for each inserted key tag, ICF stores the
indexes of the hash equations used to calculate the location and
fingerprint of each inserted tag. This section describes how to
construct the ICF , and how tags perform lookup operations.

1) Construction: The ICF is constructed as follows. First,
the reader constructs a traditional Cuckoo filter (CF) with key
tags. Specifically, for one key tag k, the reader checks the
h buckets in the CF by calculating H(IDk, sℏ) mod f2I ,
where f2I is the length of ICF’s second layer. The optimal
value of f2I will be analyzed shortly. If not all h buckets are
empty, the reader inserts k into the CF by putting its ID into
any one of the empty buckets. Otherwise, the reader randomly
selects one of the h buckets and replaces the existing key
tag with k. The displaced key tag is relocated with the same
insertion steps. This process continues until all key tags are
successfully inserted or the maximum iterations are reached.
If the construction fails, the reader increases the size of the CF
and reconstructs it until all key tags are successfully inserted.
Each non-empty bucket stores the fingerprint of key tag using
H(IDk, sf), and empty buckets can be left empty.

Second, the reader builds ICF based on CF, which consists
of two layers. To insert x key tags, the reader first sorts their
fingerprints in ascending order, denoted as F1 < F2 ≤ · · · ≤
Fx. The reader then calculates the difference between consec-
utive fingerprints, denoted as ∆Fi = Fi − Fi−1, resulting in
the fingerprint difference set {∆F1,∆F2, · · · ,∆Fx}, where
F0 = 0. In the first layer, for the ith bucket, the reader stores
∆Fi along with the index of the hash equation hℏ used to
successfully insert the ith key tag into the CF. Therefore,
the first layer has a length of f1I = x. In the second layer,
the ith bucket only stores the index of the hash equation hℏ
that successfully inserts the key tag into the ith bucket of the
CF. For empty buckets, the reader fills them with a random
useless hash equation’s index, denoted as hu. A useless hash
equation is one that is not used to insert any key tag within the
set {1, 2⌈log2(h)⌉}. However, when ⌈log2(h)⌉ = log2(h), no

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 9

12h F

5F

21h F

 3F xF

1h
2h 3h

tag

1h2h
3h

1F 2F 3F 4F 1xF  xF

2k1k tag

4F 1F 2F

2h  2h 3h1h 2h 1h

3ktag

1h
2h 3h

32h F 1 4h F
1 1xh F  2 xh F

CF:

1L

2L
:

    

0h

Empty
bucket

Fig. 6: Illustration of incremental Cuckoo filter construction.

unused hash equation exists. In this case, the reader constructs
a vector EI to record the indexes of empty buckets.

For the reconstruction of the incremental Cuckoo filter, since
it builds upon the initial Cuckoo filter constructed in Kadept,
its reconstruction scenario is analogous to that of the Cuckoo
filter, as detailed in Section IV-B2. For brevity, we do not
repeat the details here.

2) Lookup: We now present the lookup process of the ICF .
Given a tag k, it first checks each bucket of the first layer.
For the ith (1 ≤ i ≤ f1I) bucket, the tag calculates its hash
value, denoted as vik, using the hash equation index stored in
this bucket and Eq. (1). It then checks the vikth bucket in the
second layer. This check involves two cases.

Case 1: If no useless hash equations exist (hu does not
exist) and vik is in EI , the vikth bucket is considered empty.

Case 2: If at least one useless hash equation exists (hu is
a randomly selected useless hash equation’s index) and the
value in the vikth bucket is hu, the vikth bucket is empty.

In both cases, if the vikth layer bucket is empty, k skips the
current lookup and moves to the next bucket in the first layer.
Otherwise, k checks whether vik matches the value stored in
the vikth bucket. If they do not match, k skips to the next
bucket in the first layer. If they match, k further calculates its
fingerprint Fk using Eq. (1) and checks if it equals the sum of
the fingerprint differences in the first i buckets of the first layer.
If Fk =

∑i
i=1 ∆Fi, k increments its success counter, denoted

as pk (initially 0), by 1 and proceeds. Otherwise, it skips. The
lookup continues until h checks or all buckets are checked. If
pk = 1, k passes the lookup; otherwise, it deactivates itself.
This approach helps filter out the false positive tags that match
multiple buckets. Note that the reader resolves the fingerprint
collisions during the ICF construction, ensuring that each key
tag maps to only one bucket.

3) Illustration: Fig. 7 illustrates the lookup process in a
scale-down system with three key tags k1−3 and three trivial
tags t1−3. The reader constructs the ICF using k1−3 with
fingerprints F1 < F2 < F3, as shown in Fig. 6, and broadcasts
it with its construction parameters to tags. All tags that receive
the ICF perform the lookup. We take k2 and t3 as examples.

For k2, it begins by checking the first bucket in the first layer
and calculates the hash value using the hash equation index
h2 stored in that bucket, which is 4. Next, it checks the fourth
bucket in the second layer, which contains h0, prompting it
to move to the second bucket of the first layer containing
h1. Using h1, k2 calculates a hash value of 5 and checks the

12h F 21h F

1h

2h2h 1h

2h

1L

2L
:

0h

2h 1h3h

32h F

0h

3h 2h
1h

0h0h

2h

1k 2k 3k1t 2t 3t

2h 3h
1h

Fig. 7: An example of incremental Cuckoo filter lookup.

fifth bucket in the second layer, which matches h1. It then
compares the sum of the fingerprint differences in the first
two buckets of the first layer with its fingerprint F2. Since
F2 = ∆F1 + ∆F2 = F1 + (F2 − F1) = F2, k2 increments
its success counter p2 by 1 and proceeds. Consequently, k2
passes the lookup with p2 = 1. Similarly, k1 and k3 can also
successfully pass the lookup.

For t3, it calculates a hash value of 7 using h2 from the first
bucket. The seventh bucket in the second layer contains h2,
prompting t3 to compare the fingerprint in the first bucket of
the first layer with its fingerprint F3. However, comparing F3

with ∆F1 reveals a mismatch. t3 then checks the remaining
buckets, but all fail. Thus, t3 fails the lookup and deactivates
itself. Similarly, t1 and t2 fail to pass the lookup.

B. E-Kadept Protocol Description

Due to false positives in the incremental Cuckoo filter, some
false positive trivial tags may cause the misidentification of the
distribution of key tags. To identify all key tags accurately, E-
Kadept runs multiple rounds. Each round has three phases:
1) the constructing phase to construct an incremental Cuckoo
filter with the unidentified key tags; 2) the filtering-assigning-
separating phase to filter out trivial tags, assign each key tag a
unique and continuous slot, and separate key tags from trivial
tags; 3) the identifying phase that identifies the distribution of
key tags. Following describes these phases separately.

1) Constructing Phase: In this phase, a reader builds an
incremental Cuckoo filter ICF with the unidentified key tags,
using the method described in Section V-A1.

2) Filtering-assigning-separating Phase: After getting the
ICF , the reader broadcasts it and its construction parameters
⟨f1I , f2I , s1−h, sf , d,∆d,∆h, hu, EI⟩ to tags, where ∆d and
∆h represent the number of bits needed to represent the
maximum fingerprint difference and the hash equation index,
respectively. Additionally, if there is no useless hash equation,
hu is set to ∅; otherwise, EI is set to ∅. Upon receiving
this query request, each tag according to the lookup process
described in Section V-A2 to determine whether it can pass
the ICF or not. If a tag cannot pass the ICF , it updates its
flag to 1 before keeping silent, indicating that it is a trivial tag.
Otherwise, it keeps active and calculates its slot index used for
the identification phase as follows.

Let SIj denote the slot index of key tag kj . kj records the
index of the bucket in the first layer where it passes the ICF ,
denoted as pj , and sets SIj = pj . Note that only tags that
successfully pass the ICF are assigned a unique slot index,
as tags matching multiple buckets will fail the ICF and keep
silent. Alternatively, each key tag can calculate its slot index by

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 10

counting the number of non-empty buckets up to its matched
bucket in the second layer. Both methods ensure each key tag
has a unique slot index, but may assign different values. For
simplicity, we use the first method.

3) Identifying Phase: Similar to Kadept, E-Kadept concur-
rently identifies the distribution of noncontentious key tags and
then identifies the distribution of contentious key tags using a
reader schedule algorithm. The details are described in Section
III-D and are omitted here.

So far, we have proposed two protocols Kadept and E-
Kadept. For a given application, the user can select the
appropriate protocol based on their requirements. Kadept, with
its simpler design, is preferable in small-scale systems or when
the proportion of key tags is low, particularly when upper-
layer applications are not time-sensitive. Otherwise, E-Kadept
is recommended due to its higher time efficiency.

VI. PERFORMANCE ANALYSIS OF E-KADEPT

In this section, we analyze the execution time TE−Kadept

to minimize the average time for fully identifying all key tags.
Similar to Kadept, TE−Kadept = Tn + Tc = max{Ti} +∑C

j=1 max{T j
i }. Where Tn is the parallel identification time

for noncontentious key tags; Tc is the time for identifying
contentious key tags through reader scheduling; Ti is the time
for Ri; T

j
i is the time for Ri to identify contentious key tags

in the jth schedule; and C is the number of schedules. The
definitions of these parameters align with those in Kadept,
while the value of Ti differs in E-Kadept. For reader Ri, in the
τ th round, the total time Tiτ includes the time for transmitting
ICF , sending ACK, and receiving one-bit responses from key
tags. In addition, if no useless hash equations exist, the reader
transmits EI to tags. Thus, Tiτ is:{

⌈
(f1Iτ

+f2Iτ
)⌈log2 h⌉+f1Iτ

×∆dτ

96
⌉tID + nkτ (ts + tack), hu ̸= ∅,

⌈
(f1Iτ

+f2Iτ
)⌈log2 h⌉+f1Iτ

×∆dτ

96
⌉tID + nkτ (ts + tack) + tEI , hu = ∅,

(18)
where tEI is the time for transmitting EI , f1Iτ

and f2Iτ
are

the lengths of the first and second layers of ICFτ , and ∆dτ
is the bit length for the maximum fingerprint difference in
ICFτ . From the construction of EI , we have:

tEI =
⌈log2 f2Iτ

⌉ × (f2Iτ
− nkτ

)

96
tID. (19)

The total time Ti for reader Ri is
∑wi

τ=1 Tiτ , where wi denotes
the number of rounds.

A. Performance Efficiency

We optimize the parameters of the incremental Cuckoo filter
to maximize single-round tag identification efficiency θ in Eq.
(3). In E-Kadept, parameters such as nfp , E11, E10, Ec0, nl

k,
nl
t, and t are similar to those in Kadept, but with different

values. In particular, t corresponds to tτ in Eq. (18). Lemma
4 gives the expected values of E11, E10, Ec0, nl

k, and nl
t.

Lemma 4: The expected values of E11, E10, Ec0, nl
k, and

nl
t are:

E11 = nl
k(1−

1
2d
e−

1

2d

nk
)nt

E10 = (nk − nl
k)(1−

1
2d
e−

1

2d

nk
)nt

Ec0 = (nk − nl
k){(nt − nl

t)
1
2d
e−

1

2d

nk

+

nt−nl
t∑

j=1

(
nt − nl

t

j

)
(

1
2d
e−

1

2d

nk
)j(1−

1
2d
e−

1

2d

nk
)nt−nl

t−j}

nl
k = n11e

nt
nk

1

2d
e
− 1

2d

nl
t = nt −

nt
c0nk

1
2d
e−

1

2d (nk − n11e
nt
nk

1

2d
e
− 1

2d

)

,

(20)

where nk, nt, and α are the numbers of key tags, trivial tags,
and given false negative indicator threshold, respectively.

Proof: The reader constructs the ICF with nk tags, then
broadcasts it and its parameters. Each tag performs a lookup,
and only those that pass the filter respond to the reader in
their assigned slots according to their slot indexes. We analyze
the false positive probability pfI of the incremental Cuckoo
filter. For one bucket in the first layer the ICF , the probability
that a tag that is not inserted into this bucket still returns a
successful match (i.e., a false positive) is at most 1/2d, as
the tag must match the d-bit fingerprint calculated from the
corresponding buckets’ fingerprint differences. According to
the incremental Cuckoo filter construction, each tag checks at
most h times during a lookup. Let hc be the number of checks,
where 1 ≤ hc ≤ h. The probability of one successful match
after hc comparisons is:

pfI =

(
hc

1

)(
1

hc
× 1

2d

)(
1− 1

hc
× 1

2d

)hc−1

=
1

2d
(1− 1

hc × 2d
)hc−1

≈ 1

2d
e−

1

2d .

(21)

By comparing expected and actual slot statuses, the reader
determines slot pairs (e.g., ⟨1, 1⟩, ⟨1, 0⟩, ⟨c, 0⟩). As the ICF
assigns a unique slot index to each key tag, the slot frame
size f is also nk. A ⟨1, 1⟩ slot pair occurs when a bucket in
the ICF is filled by a local key tag without any false positive
trivial tags. Let p11 denote this probability. We have:

p11 = (1− pfI
f

)nt × nl
k

f
. (22)

Hence, the expected number E11 is:

E11 = p11 × f = nl
k(1−

1
2d
e−

1

2d

nk
)nt . (23)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 11

The value of d will be analyzed shortly. Given d, the values of
nl
k and nl

t can be calculated using the cardinality estimation
method described in Section IV-C. From Eq. (14), we have:

nl
k = n11e

pfI
nk

nt

= n11e
nt
nk

1

2d
e
− 1

2d

,

(24)

where n11 is the number of ⟨1, 1⟩ slot pairs counted by the
reader. Moreover, based on Eq. (16), we can calculate nl

t:

nl
t = nt −

nt
c0nk

pfI (nk − nl
k)

= nt −
nt
c0nk

1
2d
e−

1

2d (nk − n11e
nt
nk

1

2d
e
− 1

2d

)

.
(25)

The slot pair ⟨1, 0⟩ occurs when a slot is assigned by exactly
one nonlocal key tag and no false positive trivial tags. Thus,
the probability p10 of ⟨1, 0⟩ is:

p10 =
nk − nl

k

f
(1− pfI

f
)nt

=
nk − nl

k

nk
(1−

1
2d
e−

1

2d

nk
)nt .

(26)

And the expected value of E10:

E10 = (nk − nl
k)(1−

1
2d
e−

1

2d

nk
)nt . (27)

Next, a slot pair ⟨c, 0⟩ occurs when a bucket is filled by a
nonlocal key tag and one or more false positive trivial tags.
We can derive the expected value of Ec0 that represents the
expected number of tags (key tags and trivial tags) in ⟨c, 0⟩:

Ec0 = nk
nk − nl

k

nk

nt−nl
t∑

j=1

(
nt − nl

t

j

)
(j + 1)(

pfI
nk

)j(1− pfI
nk

)nt−nl
t−j

= (nk − nl
k){(nt − nl

t)
1
2d

e
− 1

2d

nk

+

nt−nl
t∑

j=1

(
nt − nl

t

j

)
(

1
2d

e
− 1

2d

nk
)j(1−

1
2d

e
− 1

2d

nk
)nt−nl

t−j}.

(28)

For clarity, we keep nl
k, nl

t, and d in the expressions for E11,
E10, and Ec0. Their values can be calculated using the known
parameters nk, nt, n11, nc0, and α.

B. The Parameters of Incremental Cuckoo Filter
Lemma 5 provides the optimized construction parameters of

the incremental Cuckoo filter ICF that maximize single-round
tag identification efficiency θ.

Lemma 5: Given the false negative indicator α, the values
of h, f1I , f2I , d, and ∆d are:

h = 3

f1I = nk

f2I = ⌊1.0633nk⌉

∆d = ⌈log2⌈
lnnk + γ

nk
× 2d⌉⌉

d = max (θ) s.t. min(d) = ⌈log2
nt − αnk

αnk
⌉,

(29)

where γ is Euler’s constant.
Proof: From the ICF construction, f1I = nk. As stated

in Lemma 4, θ’s numerator (E11+E10+Ec0) depends solely
on d with fixed parameters. The denominator t (Eq. (18))
depends on both h and d, as f2I is related to h. To maximize θ,
we first find the optimal h that minimizes h-dependent terms
in t, then optimize d with this h. To insert all nk key tags into
the ICF , we require f2I ≥ nk. For one bucket in the second
layer, the probability that no tag is mapped to it by using h
hash functions is (1 − 1

f2I
)nkh, and the expected number of

empty buckets is f2I (1− 1
f2I

)nkh. Therefore, we have:

f2I − f2I (1−
1

f2I
)nkh = nk. (30)

From the above equation, we can derive the h-f2I relationship:

h =
− ln (1− nk

f2I
)

nk

f2I

. (31)

By varying f2I from nk to 1.5nk, we obtain the corresponding
values h and ⌈log2 h⌉, as shown in Fig. 8(a). The total number
of bits related to h and f2I in t, denoted as B(h), is:

B(h) = (f1I + f2I)⌈log2 h⌉+ e(h), (32)

where e(h) is the number of bits for transmitting the EI to
tags. If ⌈log2(h)⌉ = log2(h), e(h) = ⌈log2 f2I⌉× (f2I −nk);
otherwise, e(h) = 0. By minimizing B(h), we determine the
optimal h that minimizes the h-dependent bits transmitted by
the reader in t. As illustrated in Fig. 8(b), the optimal h is 3.
With increasing f2I , both h and ⌈log2 h⌉ decrease in discrete
steps. Correspondingly, B(h) decreases when ⌈log2 h⌉ drops;
however, when ⌈log2 h⌉ remains constant, B(h) may vary. For
instance, when h = 3 and h = 4, both have ⌈log2 h⌉ = 2, but
B(h) for h = 3 is smaller. This is because h = 4 requires
additional e(h) bits due to ⌈log2 h⌉ = log2(h). The optimal
h of 3 is independent of the number of tags used to construct
the ICF . In Fig. 8(c), when nk is 1000 and f2I varies from
1000 to 1500, the optimal h remains 3. To determine the
optimal f2I , we solve Eq. (31) by finding the intersection of
e3(1−nk/f2I) and e3(1−nk/f2I). Using a numerical technique
like bisection, we obtain nk/f2I ≈ 0.9405, f2I ≈ 1.0633nk.
As shown in Fig. 8(d), for nk = 500, the optimal f2I is 532.

To optimize d, we determine the minimum fingerprint length
min(d) to meet the identification accuracy and calculate the
expected value of ∆d. Substituting ∆d and other parameters
into Eq. (3), we numerically solve d to maximize θ. From Eq.
(21), the number of false positive tags of the ICF is:

nfp = nt × pfI =
nt

2d
e−

1

2d . (33)

Based on Eq. (2), the minimum fingerprint length is:

min(d) = ⌈log2
nt − αnk

αnk
⌉. (34)

We now analyze the expected value of ∆d, which is given
by ⌈log2 max(∆F1,∆F2, · · · ,∆Fnk

)⌉. To compute this, we
first determine E[max(∆F1,∆F2, · · · ,∆Fnk

)]. This can be
reformulated as the problem of finding the expected length of

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 12

500 550 600 650 700 750
1

2

3

4

5

(a) Required h vs. f2I

500 550 600 650 700 750
2000

2500

3000

3500

4000

(b) Bit cost B(h) vs. f2I (nk = 500)

1000 1100 1200 1300 1400 1500
4000

5000

6000

7000

8000

(c) Bit cost B(h) vs. f2I (nk = 1000)

500 550 600 650 700 750
0

2

4

6

8

(d) Optimal f2I at h = 3

Fig. 8: Analysis of h and f2I for optimal ICF construction.

2 10 20 30
0.5

1

1.5

2

2.5

Fig. 9: Fingerprint length vs. tag identification efficiency.

the longest segment in a rope of length 2d that is randomly di-
vided into nk segments. Let F1, F2, ..., Fnk

denote the ordered
positions of these cuts, with ∆Fi = Fi−Fi−1 representing the
length of the i-th segment. The probability that any specific
subset of k segments simultaneously exceeds given thresholds
c1, c2, · · · , ck (

∑k
i=1 ci ≤ 1) is (1−c1−c2−· · ·−ck)

nk−1 [35].
Furthermore, applying the inclusion-exclusion principle, when
c1 = c2 = · · · = ck = z, the probability that the maximum
segment length exceeds z is:

P (max(∆F1,∆F2, · · · ,∆Fnk) > z)

=

nk∑
k=1

(−1)k−1

(
nk

k

)
(1− kz)nk−1.

(35)

And the expected value of max(∆F1,∆F2, · · · ,∆Fnk
) is:

E(max(∆F1,∆F2, · · · ,∆Fnk) > z)

= 2d
∫ ∞

0

P (max(∆F1,∆F2, · · · ,∆Fnk) > z)dz

= 2d
nk∑
k=1

(−1)k−1

(
nk

k

)∫ 1
k

0

(1− kz)nk−1dz

= 2d
nk∑
k=1

(−1)k−1

(
nk

k

)
1

knk

= 2d
1

nk

nk∑
k=1

1

k

= 2d
Hnk

nk
,

(36)

where Hnk
is the nkth harmonic number [36]. Approximating

Hn as lnn + γ, where γ ≈ 0.5772156649 · · · is the Euler’s
constant [37], the expected value of ∆d is:

∆d = ⌈log2⌈
lnnk + γ

nk
× 2d⌉⌉. (37)

R1:3 R2:2 R3:3 R4:2

R5:1 R6:0 R7:1 R8:0

R9:3 R10:2 R11:3 R12:2

R13:1 R14:0 R15:1 R16:0

reader key tag trivial tag

(a) Regular readers & random tags

R1:2

R2:1
R3:0

R4:3

R5:1

R6:1

R7:0

R8:2
R9:3

R10:2

R11:3

R12:0

R13:1

R14:2

reader key tag trivial tag

(b) Random readers & random tags

Fig. 10: Uniform tag deployment with grid and random
readers.

We numerically optimize d to maximize θ by incorporating the
analyzed parameters into Eq. (3). Fig. 9 shows the relationship
between θ and d when nk = 1000, nt = 10000, nl

k = 800,
and nl

t = 5000. The optimal d is set to the maximum θ, with
its initial value set to min(d).

VII. PERFORMANCE EVALUATION

A. Simulation Configurations

1) Parameter Setting: Similar to the existing work [24],
[38]–[40], the parameter settings follow the specifications of
the C1G2 standard [32]. In C1G2, the tag-to-reader transmis-
sion rate ranges from 40kbps to 640kbps when FM0 is used
and 5kbps to 320kbps when Miller is used. We take the lower
bound 40kbps in the intersection set 40kbps to 320kbps as
the tag-to-reader data rate. Similarly, the reader-to-tag data
rate varies from 26.7kbps to 128kbps and we adopt 26.7kbps.
Any consecutive communications between the reader and tags
are separated by different time intervals. When the reader
transmits commands, tags wait for time T1 before replying.
After receiving replies from the tags, the reader waits for
time T2 before further communication. In our simulation, we
set T1 = 100µs and T2 = 50µs, which comply with the
C1G2 standard. Therefore, tID = 37.45 × 96 = 3595.2µs,
ts = (25×1+150) = 175µs, and tack = 37.45×2 = 74.9µs.
There is only one time interval between a tag transmission and
a corresponding reader ACK. We use Python-based simulator
to generate reader-tag deployment data, which is then fed
in a Matlab-based simulator to compare the performance of
our protocols with the exiting tag distribution identification
protocol IB [27], the leading polling method IPP [30], and the
state-of-the-art tag anti-collision protocol EUTI [31] across
various scenarios.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 13

R1:3 R2:2 R3:3 R4:2

R5:1 R6:0 R7:1 R8:0

R9:3 R10:2 R11:3 R12:2

R13:1 R14:0 R15:1 R16:0

reader key tag trivial tag

(a) Regular readers & Uniform trivial tags
and Gaussian key tags

R1:0

R2:1

R3:0

R4:3

R5:1

R6:1

R7:2

R8:3

R9:2

R10:0

R11:1

R12:3

R13:2

R14:2

R15:1

reader key tag trivial tag

(b) Random readers & Uniform trivial tags
and Gaussian key tags

R1:3 R2:2 R3:3 R4:2

R5:1 R6:0 R7:1 R8:0

R9:3 R10:2 R11:3 R12:2

R13:1 R14:0 R15:1 R16:0

reader key tag trivial tag

(c) Regular readers & Uniform trivial tags
and multi-Gaussian key tags

R1:0

R2:1

R3:1

R4:0

R5:0

R6:1R7:1

R8:0

R9:2

R10:2

R11:2

R12:3

R13:3

R14:2

R15:3

reader key tag trivial tag

(d) Random readers & Uniform trivial tags
and multi-Gaussian key tags

Fig. 11: Gaussian key tag deployment with grid and random readers.

2) Readers & Tags Deployment Strategy: We evaluate our
protocols on RFID systems with various reader (grid, random)
and tag (Uniform, Gaussian) deployment strategies. First, we
establish a baseline scenario with uniformly distributed tags,
where trivial and key tags are randomly placed across the
entire area, as shown in Fig. 10(a) and Fig. 10(b). Second, we
model typical real-world scenarios where key tags correspond
to valuable goods of the same type or owned by the same
merchant. These items are often stored together in one or
more locations. To simulate such non-uniform distribution,
we generate one or more Gaussian distributions with means
ranging from 0 to 1 and variances from 0 to 0.1, from
which the horizontal and vertical coordinates of key tags are
independently sampled, as depicted in Fig. 11.

Additionally, to model potential reader interference, we em-
ploy an undirected graph, with edges representing neighboring
readers [24], [27]. In a multi-reader RFID system, the required
number of readers to completely cover the surveillance area
depends on each reader’s communication radius, which is set
by the reader’s power. To investigate the impact of reader
coverage, we vary the communication radius of the readers in a
unit space while maintaining a minimum number of readers for
full coverage. For example, when the communication radius
of the reader is set to 0.18 and 0.12, approximately 23 and 48
readers are required, respectively.

B. Time Efficiency

In the following simulations, we evaluate the time efficiency
of Kadept in RFID systems with different parameter settings.
In Fig. 12, Fig. 13, and Fig. 14, we compare the execution
time of Kadept with the IB, IPP, and EUTI across Uniform,
Gaussian, and multi-Gaussian distribution systems, as shown
in Fig. 10(a) and Fig. 10(b), Fig. 11(a) and Fig. 11(b), Fig.
11(c) and Fig. 11(d), respectively. In addition, to identify
key tags correctly and completely, we eliminate the negative
interference and clock difference caused by wave superpose
[40], which is exploited in IB. Hence, in IB, we let tags
respond to readers with one bit in a slot according to the
specifications of C1G2 standard. For EUTI, it is designed
for unknown tag identification (identifying newly added tags),
whereas our work focuses on determining the distribution
of a subset of known tags, pursuing fundamentally different
goals. To adapt EUTI for our problem, we treat its known and
unknown tags as our trivial and key tags, respectively. For a

fair comparison, we modify its identification phase to allow
each key tag to transmit only a single bit instead of its full ID.
Additionally, we adjust EUTI’s deactivation phase to prevent
silent tags (those mapped to singleton slots) from transmitting
RN16, thereby significantly reducing time overhead in our
scenario.

In Fig. 12(a), Fig. 13(a), and Fig. 14(a), we comprehensively
compare the execution time of E-Kadept, Kadept, IB, IPP, and
EUTI under four distinct scenarios. For clarity, we use mg

and mr to represent the number of readers in regular and
random reader deployment scenarios, respectively. Moreover,
we define tag density (ρ) as the ratio of total tags to the number
of readers, and key tag ratio (κ) as the ratio of key tags to
total tags. Thus, ρ = x+y

mg(mr)
and κ = x

x+y , where x and
y are the number of key tags and trivial tags, respectively.
In scenario 1, we set x + y = 10, 000, κ = 0.1, mg = 16,
and mr ≈ 23. Without changing other parameters, we double
the tag size x + y in scenario 2, i.e., x + y = 20, 000, κ =
0.1, mg = 16, and mr ≈ 23. In scenario 3, we increase the
number of readers to mg = 36 and mr ≈ 48, by adjusting the
communication radius. In turn, we double κ in scenario 4. To
examine the execution time of our protocols, we take a closer
look at scenario 4 in Fig. 12(a), Fig. 13(a), and Fig. 14(a).

In Fig. 12(a), when key tags follow a Uniform distribution,
IB takes 37s (55.9s) in a grid (random) reader deployment.
IPP reduces the execution time to 30.7s (46s), and EUTI
further decreases it to 18.7s (28s). Kadept makes a significant
advancement by filtering trivial tags and assigning a unique
slot to each key tag for replying, which substantially shortens
the execution time to 8.1s (14.5s). E-Kadept achieves the best
performance, reducing the execution time to 5.3s (9.2s) by
leveraging an incremental Cuckoo filter design.

In Fig. 13(a), when key tags follow a Gaussian distribution,
IB takes 39s (48.4s) with grid (random) reader deployment.
IPP reduces the execution time to 30.7s (38.4s), and EUTI
further reduces it to 20.9s (26s). Kadept substantially improves
performance to 9.6s (14.4s). E-Kadept outperforms all proto-
cols, achieving 6.1s (9.2s).

In Fig. 14(a), the execution time of all protocols fluctuates
across different cases but generally trends higher than in the
Uniform and Gaussian scenarios due to uneven reader loads
from the multi-Gaussian distribution of key tags. Despite these
variations, E-Kadept consistently outperforms Kadept, EUTI,
IPP, and IB. This performance trend holds across all scenarios:

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 14

1 2 3 4
0

20

40

60 E-Kadept (g)

Kadept (g)

IB (g)

IPP (g)

EUTI (g)

E-Kadept (r)

Kadept (r)

IB (r)

IPP (r)

EUTI (r)

(a)

2000 4000 6000 8000 10000
0

10

20

30 E-Kadept (g)

Kadept (g)

IB (g)

IPP (g)

EUTI (g)

E-Kadept (r)

Kadept (r)

IB (r)

IPP (r)

EUTI (r)

(b)

200 400 600 800 1000
0

10

20

30

40

50 E-Kadept (g)

Kadept (g)

IB (g)

IPP (g)

EUTI (g)

E-Kadept (r)

Kadept (r)

IB (r)

IPP (r)

EUTI (r)

(c)

0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3
0

10

20

30 E-Kadept (g)

Kadept (g)

IB (g)

IPP (g)

EUTI (g)

E-Kadept (r)

Kadept (r)

IB (r)

IPP (r)

EUTI (r)

(d)

Fig. 12: Execution time with Uniform key tag distribution.

1 2 3 4
0

20

40

60 E-Kadept (g)

Kadept (g)

IB (g)

IPP (g)

EUTI (g)

E-Kadept (r)

Kadept (r)

IB (r)

IPP (r)

EUTI (r)

(a)

2000 4000 6000 8000 10000
0

10

20

30 E-Kadept (g)

Kadept (g)

IB (g)

IPP (g)

EUTI (g)

E-Kadept (r)

Kadept (r)

IB (r)

IPP (r)

EUTI (r)

(b)

200 400 600 800 1000
0

10

20

30

40

50 E-Kadept (g)

Kadept (g)

IB (g)

IPP (g)

EUTI (g)

E-Kadept (r)

Kadept (r)

IB (r)

IPP (r)

EUTI (r)

(c)

0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3
0

10

20

30 E-Kadept (g)

Kadept (g)

IB (g)

IPP (g)

EUTI (g)

E-Kadept (r)

Kadept (r)

IB (r)

IPP (r)

EUTI (r)

(d)

Fig. 13: Execution time with Gaussian key tag distribution.

1 2 3 4
0

20

40

60 E-Kadept (g)

Kadept (g)

IB (g)

IPP (g)

EUTI (g)

E-Kadept (r)

Kadept (r)

IB (r)

IPP (r)

EUTI (r)

(a)

2000 4000 6000 8000 10000
0

10

20

30 E-Kadept (g)

Kadept (g)

IB (g)

IPP (g)

EUTI (g)

E-Kadept (r)

Kadept (r)

IB (r)

IPP (r)

EUTI (r)

(b)

200 400 600 800 1000
0

10

20

30

40

50 E-Kadept (g)

Kadept (g)

IB (g)

IPP (g)

EUTI (g)

E-Kadept (r)

Kadept (r)

IB (r)

IPP (r)

EUTI (r)

(c)

0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3
0

10

20

30 E-Kadept (g)

Kadept (g)

IB (g)

IPP (g)

EUTI (g)

E-Kadept (r)

Kadept (r)

IB (r)

IPP (r)

EUTI (r)

(d)

Fig. 14: Execution time with multi-Gaussian key tag distribution.
E-Kadept performs the best, Kadept follows, then EUTI, with
IPP and IB being the least efficient.

Now, we study the impact of system scale, tag density,
and key tag ratio on the execution time of E-Kadept, Kadept,
IB, IPP, and EUTI in the Uniform and Gaussian distribution
systems.

The Uniform Distribution System. First, we study the
impact of the system scale on the execution time of the four
protocols. In Fig. 12(b), we fix κ = 0.1 and vary x+ y from
1000 to 10,000 with a step size of 1000. The minimum number
of readers required to cover all tags may vary in random reader
deployment scenarios. As x+y increases, the execution time of
E-Kadept, Kadept, IB, IPP, and EUTI generally increases and
fluctuates. This is because the time required for these protocols
depends not only on the number of tags but also on the degree
of parallelism among readers. A larger x + y requires these
protocols to handle more tags, naturally increasing the time.
Additionally, an increased number of schedules reduces reader
parallelism, further adding to the execution time. For example,
in random scenarios, when x+y is 7000 and 8000, the numbers
of schedules are 6 and 5, respectively, these protocols take
longer to handle 7000 tags than 8000 tags. The higher the
reader parallelism, the less the execution time.

In Fig. 12(c), we investigate how the tag density influences
the execution time of E-Kadept, Kadept, IB, IPP, and EUTI.
With 16 fixed readers, we vary the total number of tags x +
y from 1600 to 16,000, corresponding to the tag density ρ
ranging from 100 to 1000 in steps of 100. As expected, the

execution time of these protocols increases as ρ rises due to the
increased tag load per reader. In random reader deployments,
fluctuations occur due to variations in reader parallelism.

Fig. 12(d) shows the impact of the key tag ratio on execution
time. We fix x+y = 10, 000 and vary κ from 0.02 to 0.3 with a
step size of 0.02. The execution time of E-Kadept, Kadept, and
EUTI increases with κ, while IB and IPP remain stable as they
handle all tags. This is because E-Kadept, Kadept and EUTI
require more bit transmission for the filter to deactivate trivial
tags and more response bits from key tags as κ increases.
Nevertheless, our protocols still outperform IB, IPP, and EUTI,
especially when κ is small, a scenario for which our protocols
were specifically designed. Furthermore, E-Kadept, with its
efficient incremental Cuckoo filter, shows less performance
degradation than Kadept as κ increases.

The Gaussian Distribution System. Fig. 13(b) illustrates
the execution time of E-Kadept, Kadept, IB, IPP, and EUTI
in relation to the system scale. We vary x + y from 1000 to
10,000 with a step length of 1000. Similar to Fig. 12(b), the
execution time of all protocols increases with x+ y; however,
in most cases, E-Kadept, Kadept, IB, and EUTI take more time
in the Gaussian distribution systems. This is due to the uneven
tag distribution across readers, with those covering fewer tags
finishing earlier but having to wait for others, thus wasting
time. For IPP, its execution time does not change when x+ y
and the number of schedules are fixed. Therefore, it performs
stably in grid reader scenarios but fluctuates in random ones.

In Fig. 13(c), we vary the tag density ρ from 100 to 1000

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 15

with a step length of 100. As ρ increases, the execution time of
E-Kadept, Kadept, EUTI, IPP, and IB generally increases. In
regular reader deployments, the execution time of all protocols
increases steadily with ρ. In random reader deployments, the
execution time of all protocols fluctuates due to the combined
effects of reader parallelism and individual reader load. For
instance, when ρ = 700 and ρ = 1000, both use 5 schedules.
The higher tag density at ρ = 1000 leads to more time for all
protocols. However, at ρ = 900, the reduced reader parallelism
to 6 schedules increases the time compared to ρ = 1000.

The parameter settings in Fig. 13(d) are the same as in Fig.
12(d). The execution time of E-Kadept, Kadept, IB, IPP, and
EUTI varies in random reader scenarios, while IB and IPP
remain stable in regular ones. Despite the increasing trend in
execution time with κ, our protocols, particularly E-Kadept,
exhibit better performance than IB, IPP, and EUTI.

The multi-Gaussian Distribution System. The parameter
settings here remain consistent with the Uniform and Gaussian
distribution systems. With key tags distributed across multiple
Gaussian distributions, readers covering key tag hotspots ex-
perience increased load while other readers maintain relatively
balanced coverage, affecting protocol performance differently
as illustrated in Fig. 14(b), Fig. 14(c), and Fig. 14(d).

From Fig. 13(b) and Fig. 14(b), we observe that the more
uneven tag distribution in the multi-Gaussian system leads
to greater variability in reader scheduling. For example, the
number of schedules varies with the total number of tags: 4
at 7000, 6 at 8000 and 9000, and 5 at 10,000. This results in
more execution time fluctuations of all protocols. When x+ y
is 8000 and 9000, higher schedule counts further increase the
execution time of all protocols.

In Fig. 14(c), the execution time of all protocols increases
with tag density and decreases with higher reader parallelism.
For example, at tag densities of 400 and 500, the number of
schedules increases from 5 to 6, respectively, leading to more
time at ρ = 500. When the number of schedules remains at 5,
increasing tag density from 600 to 1000 raises the per-reader
tag load (1232, 1518, 1838, 1962, and 2110, respectively),
resulting in more time for EUTI, IB, and IPP. Furthermore,
the key tag distribution also affects the execution time of
our protocols. For example, even with increasing overall tag
density, a lower average number of key tags per reader, from
188 at ρ = 800 to 167 at ρ = 900, reduces execution time.

In Fig. 14(d), as κ increases, the execution time of IB and
IPP remains stable in regular reader scenarios but fluctuates in
random scenarios due to varying reader parallelism and load.
E-Kadept and Kadept, however, are influenced by both κ and
reader load, leading to fluctuations in both deployments. For
example, the number of schedules is 6 at κ = 0.12, 4 at
κ = 0.22, and 5 at other κ values, which impacts the time
fluctuations of all protocols. Moreover, the higher average tags
per reader at κ = 0.26 (904) compared to κ = 0.3 (778)
further increases the time. Despite the increase in the time as
κ rises, our protocols still outperform EUTI, IPP, and IB. For
example, at κ = 0.1 and κ = 0.3, our E-Kadept achieves 3.3×
and 1.75× performance gains over the state-of-the-art EUTI,
reducing the execution time from 10s to 2.3s and from 14s to
5.1s, respectively.

C. Discussion: Adaptability to Dynamic Environments

Simulation results show that our protocols perform well in
static RFID systems under various reader and tag deployment
strategies, where the tag set and distribution are fixed.

In real-world scenarios, however, tags may dynamically
enter, leave, or move within the system. Given our protocols’
rapid execution times (under 30 seconds for dealing with
10,000–20,000 tags), the system can be treated as static for
individual runs if tag sets and distributions remain stable
during each execution. Nevertheless, we acknowledge that tag
movement during execution may lead to two impacts: (1)
changes in per-reader tag counts may result in suboptimal
parameters, but if only trivial tags move, the distribution of
key tags remains unaffected; (2) if key tags relocate across
reader regions, the distribution may change. In such cases,
re-executing Kadept and E-Kadept can re-identify the current
key tag distribution. We maintain that our protocols are well-
suited for scenarios with low to moderate tag mobility, where
the system can be considered static for several minutes, a
condition achievable in many real-world applications.

VIII. RELATED WORK

Tag identification is a fundamental problem for RFID sys-
tems. Its objective is to collect all the tags’ IDs under the
reader’s coverage in an efficient way. Since the tags can only
communicate with the reader and cannot self-regulate their
radio transmissions, the key issue for tag identification is to
avoid tag-to-tag collisions. Prior work on the tag identification
falls into two categories: Aloha-based [26], [41], [42] and tree-
based [25], [43]. The former is to let each tag select a time
slot to transmit its ID, and the tag ID can be successfully
transmitted to the reader when a slot is selected by only
one tag. In the tree-based protocols, the collided tags are
continuously divided into two subsets until only at most one
tag in each set.

In recent years, research has shifted towards collecting
functional RFID data. For instance, tag searching [44] focuses
on determining whether a group of interested tags is present
in a given tag set; multi-group tag searching [38] aims to
concurrently search multiple groups of selected tags using a
group-based filtering mechanism; key tag tracking [39] is to
track the number of key tags in multi-tenant systems; missing
key tag identification [22], [23] aims to identify whether
and which key tags are absent; information collection [24],
[40] targets at collecting the tagged product’s information
or the sensing data of sensor-augmented tags; unknown tag
identification [31] focuses on identifying newly added tags by
eliminating interference from previously known tags.

Identifying the distribution of key tags enables efficient
collection of their functional data, crucial for various inventory
operations. Although advanced tag identification protocols like
TagMap [45] and Tash [46] can rapidly collect all tag IDs,
our focus is figure out the key tags’ distribution. Collecting
data from non-target tags incurs unnecessary overhead, and
collecting IDs from all tags may pose a privacy risk in privacy-
sensitive applications. While the tag distribution identification
protocol IB [27] and the tag polling protocol IPP [30] can

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 16

identify key tags’ distribution without leaking privacy, they
both suffer from long time delays in dealing with all tags.
We therefore propose E-Kadept and Kadept, which identify
key tag distribution by designing novel filters to eliminate
interference from trivial tags and assign a unique slot for each
key tag, while ensuring key tag privacy.

IX. CONCLUSION

In this paper, we study the problem of key tag distribution
identification in large-scale RFID systems. Two protocols, E-
Kadept and Kadept, are proposed to fast identify the distri-
bution of all key tags and separate key tags from trivial tags.
By ingeniously constructing the Cuckoo filter, Kadept is able
to assign a unique, continuous slot for each key tag when
it filters trivial tags. By checking the statuses of assigned
slots, readers can identify which key tags are under their own
coverage. E-Kadept accelerates the identification process by
design an incremental Cuckoo filter that reduces false positives
and improves space efficiency. Extensive simulations show
good performance of our protocols.

REFERENCES

[1] Y. Wang, J. Liu, S.-H. Lyu, Z. Qu, B. Tang, and B. Ye, “Identifying key
tag distribution in large-scale RFID systems,” in Proc. of IEEE/ACM
IWQoS. IEEE, 2024, pp. 1–10.

[2] A. D. Smith, A. A. Smith, and D. L. Baker, “Inventory management
shrinkage and employee anti-theft approaches,” International Journal of
Electronic Finance, vol. 5, no. 3, pp. 209–234, 2011.

[3] J. Yu, L. Chen, R. Zhang, and K. Wang, “Finding needles in a haystack:
Missing tag detection in large RFID systems,” IEEE transactions on
communications, vol. 65, no. 5, pp. 2036–2047, 2017.

[4] S. Li, S. Li, M. Chen, C. Song, and L. Lu, “Frequency scaling meets
intermittency: Optimizing task rate for RFID-scale computing devices,”
IEEE Transactions on Mobile Computing, vol. 23, no. 2, pp. 1689–1700,
2023.

[5] X. Chen, J. Liu, H. Huang, Y.-E. Sun, X. Zhang, and L. Chen,
“Revisiting cardinality estimation in cots RFID systems,” in Proc. of
ACM MobiCom, 2023, pp. 1–14.

[6] X. Liu, Y. Huang, Z. Xi, J. Luo, and S. Zhang, “An efficient RFID tag
search protocol based on historical information reasoning for intelligent
farm management,” ACM Transactions on Sensor Networks, 2023.

[7] M. Jin, K. Li, X. Tian, X. Wang, and C. Zhou, “Graph based RFID
grouping for fast and robust inventory tracking,” IEEE Transactions on
Mobile Computing, 2024.

[8] K. Lin, H. Chen, N. Yan, Z. Ni, Z. Wang, and J. Yu, “Double polling-
based tag information collection for sensor-augmented RFID systems,”
IEEE Transactions on Mobile Computing, vol. 23, no. 5, pp. 3496–3509,
2023.

[9] J. Liu, X. Chen, S. Chen, X. Liu, Y. Wang, and L. Chen, “TagSheet:
Sleeping Posture Recognition with an Unobtrusive Passive Tag Matrix,”
in Proc. of IEEE INFOCOM, 2019, pp. 874–882.

[10] Y. Wang and Y. Zheng, “TagBreathe: Monitor Breathing with Commod-
ity RFID Systems,” IEEE Transactions on Mobile Computing, vol. 19,
no. 4, pp. 969–981, 2020.

[11] S. Zhang, Z. Ma, K. Lu, X. Liu, J. Liu, S. Guo, A. Y. Zomaya, J. Zhang,
and J. Wang, “Hearme: Accurate and real-time lip reading based on
commercial RFID devices,” IEEE Transactions on Mobile Computing,
vol. 22, no. 12, pp. 7266–7278, 2022.

[12] J. Liu, J. Yu, D. Niyato, R. Zhang, X. Gao, and J. An, “Covert ambient
backscatter communications with multi-antenna tag,” IEEE Transactions
on Wireless Communications, vol. 22, no. 9, pp. 6199–6212, 2023.

[13] J. Zhang, X. Liu, S. Chen, X. Tong, Z. Deng, T. Gu, and K. Li, “Toward
robust RFID localization via mobile robot,” IEEE/ACM Transactions on
Networking, vol. 32, no. 4, pp. 2904 – 2919, 2024.

[14] Z. An, Q. Lin, P. Li, and L. Yang, “General-purpose deep tracking
platform across protocols for the internet of things,” in Proc. of IEEE
MobiSys, 2020, pp. 94–106.

[15] G. Wang, C. Qian, L. Shangguan, H. Ding, J. Han, K. Cui, W. Xi, and
J. Zhao, “Corrections to ”hmo: Ordering RFID tags with static devices
in mobile environments”,” IEEE Transactions on Mobile Computing,
vol. 20, no. 04, pp. 1746–1746, 2021.

[16] X. Liu, J. Zhang, S. Jiang, Y. Yang, K. Li, J. Cao, and J. Liu, “Accurate
localization of tagged objects using mobile RFID-augmented robots,”
IEEE Transactions on Mobile Computing, vol. 20, no. 4, pp. 1273–1284,
2021.

[17] B. Liang, P. Wang, R. Zhao, H. Guo, P. Zhang, J. Guo, S. Zhu, H. H. Liu,
X. Zhang, and C. Xu, “Rf-chord: Towards deployable RFID localization
system for logistic networks,” in Proc. of USENIX NSDI, 2023, pp.
1783–1799.

[18] W. Gong, H. Wang, S. Li, and S. Chen, “Glac: High-precision tracking
of mobile objects with cots RFID systems,” IEEE/ACM Transactions on
Networking, vol. 32, no. 3, pp. 2331 – 2343, 2024.

[19] M. I. Ahmed, A. Bansal, K. Yuan, S. Kumar, and P. Steenkiste, “Battery-
free wideband spectrum mapping using commodity RFID tags,” in Proc.
of ACM MobiCom, 2023, pp. 1–16.

[20] Y. Zhu and Q. Zhang, “Loprint: Mobile authentication of RFID-tagged
items using cots orthogonal antennas,” in Proc. of IEEE INFOCOM.
IEEE, 2024, pp. 1551–1560.

[21] X. Liu, B. Zhang, S. Chen, X. Xie, X. Tong, T. Gu, and K. Li, “A
wireless signal correlation learning framework for accurate and robust
multi-modal sensing,” IEEE Journal on Selected Areas in Communica-
tions, vol. 42, no. 9, pp. 2424 – 2439, 2024.

[22] J. Yu, W. Gong, J. Liu, L. Chen, F. Wang, and H. Pang, “Practical key
tag monitoring in RFID systems,” in Proc. of IEEE/ACM IWQoS, 2018,
pp. 1–2.

[23] H. Chen, Z. Wang, F. Xia, Y. Li, and L. Shi, “Efficiently and completely
identifying missing key tags for anonymous RFID systems,” IEEE
Internet of Things Journal, vol. 5, no. 4, pp. 2915–2926, 2017.

[24] X. Liu, J. Yin, S. Zhang, B. Xiao, and B. Ou, “Time-efficient target tags
information collection in large-scale RFID systems,” IEEE Transactions
on Mobile Computing, vol. 20, no. 9, pp. 2891–2905, 2020.

[25] L. Zhang, W. Xiang, and X. Tang, “An efficient bit-detecting protocol for
continuous tag recognition in mobile RFID systems,” IEEE Transactions
on Mobile Computing, vol. 17, no. 3, pp. 503–516, 2018.

[26] J. Su, A. X. Liu, Z. Sheng, and Y. Chen, “A partitioning approach to
RFID identification,” IEEE/ACM Transactions on Networking, vol. 28,
no. 5, pp. 2160–2173, 2020.

[27] F. Zhu, B. Xiao, J. Liu, B. Wang, Q. Pan, and L.-J. Chen, “Exploring
tag distribution in multi-reader RFID systems,” IEEE Transactions on
Mobile Computing, vol. 16, no. 5, pp. 1300–1314, 2017.

[28] K. Bu, M. Xu, X. Liu, J. Luo, S. Zhang, and M. Weng, “Deterministic
detection of cloning attacks for anonymous RFID systems,” IEEE
Transactions on Industrial Informatics, vol. 11, no. 6, pp. 1255–1266,
2015.

[29] J. Liu, J. Yu, X. Chen, R. Zhang, S. Wang, and J. An, “Covert
communication in ambient backscatter systems with uncontrollable RF
source,” IEEE Transactions on Communications, vol. 70, no. 3, pp.
1971–1983, 2022.

[30] J. Liu, B. Xiao, X. Liu, K. Bu, L. Chen, and C. Nie, “Efficient polling-
based information collection in RFID systems,” IEEE/ACM Transactions
on Networking, vol. 27, no. 3, pp. 948–961, 2019.

[31] C. Chu, J. Niu, W. Zheng, J. Su, and G. Wen, “A time-efficient protocol
for unknown tag identification in large-scale RFID systems,” IEEE
Internet of Things Journal, vol. 9, no. 15, pp. 13 024–13 040, 2021.

[32] “EPC radio-frequency identity protocols generation-2 UHF RFID
standard,” GS1, ISO/IEC 18000-63, Jul. 2024, https://www.gs1.org/
standards/epc-rfid/uhf-air-interface-protocol.

[33] B. Sheng, Q. Li, and W. Mao, “Efficient continuous scanning in RFID
systems,” in Proc. of IEEE INFOCOM, 2010, pp. 1–9.

[34] J. Waldrop, D. W. Engels, and S. E. Sarma, “Colorwave: an anticollision
algorithm for the reader collision problem,” in Proc. of IEEE ICC, vol. 2,
2003, pp. 1206–1210.

[35] H. A. David and H. N. Nagaraja, Order statistics. John Wiley & Sons,
2004.

[36] D. E. Knuth, The art of computer programming. Pearson Education,
1997, vol. 3.

[37] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics.
Addison-Wesley Professional, 1994, vol. 2.

[38] S. Zhang, X. Liu, S. Guo, A. Y. Zomaya, and J. Wang, “Why queue up?
fast parallel search of RFID tags for multiple users,” in Proc. of ACM
Mobihoc, 2020, pp. 211–220.

[39] X. Liu, X. Xie, K. Li, B. Xiao, J. Wu, H. Qi, and D. Lu, “Fast tracking
the population of key tags in large-scale anonymous RFID systems,”

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, , VOL. , NO. , DEC 2024 17

IEEE/ACM Transactions on Networking, vol. 25, no. 1, pp. 278–291,
2016.

[40] J. Liu, S. Chen, Q. Xiao, M. Chen, B. Xiao, and L. Chen, “Efficient
information sampling in multi-category RFID systems,” IEEE/ACM
Transactions on Networking, vol. 27, no. 1, pp. 159–172, 2018.

[41] J. Yu, P. Zhang, L. Chen, J. Liu, R. Zhang, K. Wang, and J. An,
“Stabilizing frame slotted aloha-based iot systems: A geometric ergod-
icity perspective,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 3, pp. 714–725, 2020.

[42] S.-R. Lee, S.-D. Joo, and C.-W. Lee, “An enhanced dynamic framed
slotted aloha algorithm for RFID tag identification,” in Proc. of IEEE
MobiQuitous, 2005, pp. 166–172.

[43] J. Su, Z. Sheng, C. Huang, G. Li, A. X. Liu, and Z. Fu, “Identify-
ing RFID tags in collisions,” IEEE/ACM Transactions on Networking,
vol. 31, no. 4, pp. 1507 – 1520, 2022.

[44] J. Yu, W. Gong, J. Liu, L. Chen, and K. Wang, “On efficient tree-based
tag search in large-scale RFID systems,” IEEE/ACM Transactions on
Networking, vol. 27, no. 1, pp. 42–55, 2018.

[45] Z. An, Q. Lin, L. Yang, W. Lou, and L. Xie, “Acquiring bloom filters
across commercial RFIDs in physical layer,” IEEE/ACM Transactions
on Networking, vol. 28, no. 4, pp. 1804–1817, 2020.

[46] Q. Lin, L. Yang, C. Duan, and Z. An, “Tash: Toward selective read-
ing as hash primitives for gen2 RFIDs,” IEEE/ACM Transactions on
Networking, vol. 27, no. 2, pp. 819–834, 2019.

Yanyan Wang is an associate professor with the
College of Computer and Information at Hohai Uni-
versity, Nanjing, China. Before that, she received the
B.E. degree in Electronic Information Engineering
from the PLA Information Engineering University,
in 2011. She received the M.S. degree in Computer
Science and Technology from Zhejiang University of
Technology, in 2015. She received the Ph.D. degree
in computer science and technology from Nanjing
University, in 2020. Her research interests include
RFID technologies.

Jia Liu is an associate professor with the De-
partment of Computer Science and Technology at
Nanjing University, Nanjing, China. Before that,
he received the B.E. degree in software engineer-
ing from Xidian University, Xi’an, China, in 2010.
He received the Ph.D. degree in computer science
and technology from Nanjing University, Nanjing,
China, in 2016. His research mainly focuses on
RFID identification and passive sensing. He is a
member of the IEEE, ACM, and CCF.

Zhihao Qu (Member, IEEE) received his B.S. and
Ph.D. degrees in computer science from Nanjing
University, Nanjing, China, in 2009, and 2018, re-
spectively. He is currently an associate professor in
the School of Computer Science and Software En-
gineering at Hohai University. His research interests
are mainly in the areas of edge computing, knowl-
edge distillation, and distributed machine learning.

Shen-Huan Lyu is an Assistant Researcher at the
College of Computer Science and Software Engi-
neering, Hohai University, China. He received the
Ph.D. degree in computer science from Nanjing
University in 2022. Before that, he received the
B.Sc. degree in statistics from University of Science
and Technology of China in 2017. His research
interests include ensemble learning, learning theory,
and optimization. He is a recipient of the Hong Kong
Scholars (2024).

Bin Tang (Member, IEEE) received the B.S. and
Ph.D. degrees in computer science from Nanjing
University, Nanjing, China, in 2007 and 2014, re-
spectively. He was an Assistant Researcher with
Nanjing University from 2014 to 2020, and also a
Research Fellow with The Hong Kong Polytechnic
University, Hong Kong, in 2019. He is currently
a Professor with Hohai University, Nanjing. His
research interests include area of edge computing,
network coding, and distributed machine learning.

Baoliu Ye (Member, IEEE) received the Ph.D. de-
gree in computer science from Nanjing University,
China, in 2004. He was a Visiting Researcher with
The University of Aizu, Japan, from 2005 to 2006.
He is currently a Full Professor at the Department
of Computer Science and Technology, Nanjing Uni-
versity. He has published more than 100 articles in
major conferences and journals. His current research
interests mainly include distributed systems, cloud
computing, and wireless networks.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3609967

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hohai University Library. Downloaded on December 11,2025 at 18:20:26 UTC from IEEE Xplore. Restrictions apply.

