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A B S T R A C T

Pump-and-treat (P&T) remediation is a widely adopted and effective method for groundwater contamination 
control. It is important to optimize the operation schemes (pumping well locations and pumping rates) to 
maximize contaminant removal efficiency and minimize operational costs. Recently, surrogate models have been 
integrated with optimization algorithms to formulate the remediation schemes. However, with various surrogate 
techniques available, their comparative performance in P&T remediation tasks and potential for combined usage 
of multiple surrogates require further exploration. In this study, five popular surrogate models—Kriging, Poly
nomial Interpolation, Support Vector Regression (SVR), Random Forest (RF), and Deep Neural Network (DNN)— 
were evaluated for their ability to predict contaminant removal efficiency under diverse schemes in a multi- 
contaminant site. The analysis revealed that, while DNN achieved the highest overall prediction accuracy in 
the validation stage across the 200 cases, no single surrogate model consistently outperformed the others in all 
individual cases. A multi-surrogate optimization framework, coupling all five models with a genetic algorithm, 
was developed to enhance P&T schemes. The usage of multiple surrogates finally brings benefits because the 
complementary strengths of diverse surrogate models are combined. We identified remediation schemes that 
achieved superior contaminant removal (17.5% residual contaminant) compared to the other results 
(19.2–21.7%). The framework offers a robust tool for environmental management and insights for advancing 
studies related to surrogate-based optimization.

1. Introduction

Groundwater is a vital natural resource (Liang et al., 2025; Masocha 
et al., 2020; Ning et al., 2024; Rabbani et al., 2025; Rao et al., 2022). On 
one hand, it provides primary supply for drinking water, industrial 
consumption and agricultural irrigation in many regions (Baskaran and 
Abraham, 2022; He et al., 2024; Li et al., 2024). On the other hand, it 
plays a key role in maintaining ecological balance by sustaining base
flows and wetland habitats (Fan et al., 2022; He et al., 2019, 2021). 
However, with expanding industrial activities and urban development, 
groundwater systems are being increasingly contaminated by human 
activities (Hamutoko et al., 2016; Uugwanga and Kgabi, 2021). The 

degraded water quality is posing significant risks to human health and 
aquatic ecosystems.

Various remediation methods have been developed to address the 
increasingly severe groundwater contamination phenomenon. These 
methods are broadly categorized into in-situ and ex-situ approaches 
(Truex et al., 2017; Truex et al., 2015). In-situ methods include 
permeable reactive barrier, chemical reduction, bio-reduction, and 
electrokinetic remediation techniques (Thornton et al., 2014; Wang 
et al., 2025; Xu et al., 2024; Zhu et al., 2020), which treat contaminants 
in place. In contrast, ex-situ methods involve the extraction of contam
inated groundwater or soil for off-site treatment. As one of the ex-situ 
methods, pump-and-treat (P&T) technique is especially effective and 
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popular (Zhang et al., 2025).
The P&T technique has been deemed as one of the most critical, 

invaluable (Carroll et al., 2024), and widely applied (Truex et al., 2017; 
Truex and Johnson, 2017) method for groundwater contamination 
remediation. Simply put, the P&T technique works by using a series of 
extraction wells to pump contaminated groundwater to the surface for 
treatment (Zhang et al., 2025). The P&T technique is valid for both 
dissolved solute contaminants (Chang et al., 2007; Qiang et al., 2024; 
Song et al., 2025) and non-aqueous phase liquid (NAPL) contaminants 
(Bae et al., 2024; Ciampi et al., 2023). Besides, it has been proved valid 
under complex geological conditions (Ciampi et al., 2023; Zha et al., 
2019). However, operational costs of pump-and-treat method is high 
due to energy-intensive pumping and long-term maintenance. Addi
tionally, the P&T remediation efficiency typically exhibits a progressive 
decline in the later stages (Harvey et al., 1994). This is primarily because 
contaminants could be trapped in low-permeability zones such as silt 
and clay horizons or the matrix in fractured rocks. These trapped con
taminants are released slowly through slow advection or back diffusion 
processes. Thus, the P&T efficiency subsequently enters a prolonged 
phase of persistently low extraction levels that may persist for years. 
This pattern is reflected by the tailing effect of contaminant concentra
tions in pumping wells (Carroll et al., 2024; Zha et al., 2019). As a result, 
a considerable amount of residual contamination may persist and 
require further treatment (Carroll et al., 2024; Zha et al., 2019). 
Empirical evidence indicates that residual contaminants persist after 
P&T treatment regardless of the aquifer conditions and implementation 
setups (Pedretti et al., 2014). Currently the P&T method still cannot 
achieve perfect remediation and fully restore aquifers to pre- 
contamination conditions. Therefore, it is necessary to optimize the 
P&T strategies to maximize contaminant removal efficiency (Kuo et al., 
1992; Thornton et al., 2014) and minimize total remediation costs 
(Chang et al., 2007; Qiang et al., 2024).

Recently, P&T system design has been realized through simulation- 
optimization (S-O) frameworks. Firstly, numerical models are devel
oped to represent the contaminated site's geometry and hydrogeological 
properties, and then applied to simulate the processes of groundwater 
flow and contaminant transport to the extraction pumping wells for 
removal. Secondly, the simulation model is integrated with optimization 
methods, which iteratively adjust well locations and pumping rates until 
it finds the optimal solution (either maximizing contaminant removal 
efficiency or minimizing total remediation costs). Various optimization 
algorithms have been employed to design the P&T systems. The early 
work by (Kuo et al., 1992) demonstrated that the simulated annealing 
(SA) algorithm is effective for P&T optimization. And they have speci
fied that the simulated annealing algorithm is effective because it could 
avoid local optima and explore the global optimal. Chang et al. (2007)
and Qiang et al. (2024) employed the genetic algorithm (GA) to opti
mize P&T scheme. Wang and Zheng (1997) highlighted that genetic 
algorithm as a global search method that is advantageous for designing 
groundwater pump-and-treat remediation schemes. Zheng and Wang 
(1999) further proposed an integrated optimization method that com
bines the advantages of tabu search and linear programming; this 
method achieved reduced computation cost and enhance remediation 
efficiency. (Elshall et al., 2020) employed the covariance matrix adap
tation evolution strategy (CMA-ES), which is a multi-objective frame
work, to find the P&T scheme that achieves the treatment target with 
minimum pumping rate.

Nevertheless, the simulation-optimization framework typically de
mands numerous model evaluations for effective convergence. For the 
P&T design task, the simulation model is for the transient transport 
processes, which requires iterative computations at each time step (Hou 
et al., 2016). This generates a heavy calculation load and considerable 
time consumption, ultimately may create computationally prohibitive 
tasks (Li et al., 2021). To overcome this challenge of high computation 
cost, surrogate modeling has emerged as an essential technique (Qiang 
et al., 2024; Song et al., 2025).

Surrogate models are computationally cheaper models designed to 
approximate the dominant features of a complex model (Asher et al., 
2015). Through various strategies, such as statistical methods or ma
chine learning techniques, these models can learn the relationships be
tween input parameters and output responses of the simulation model. 
Subsequently, the surrogate model generates predictions using input 
parameters, without performing the numerical simulations of the orig
inal model. The major motivation of using a surrogate model is to reduce 
the prohibitively high computation cost (Razavi et al., 2012). According 
to (Asher et al., 2015; Robinson et al., 2008), the current surrogate 
methods can be divided into three categories, including data-driven 
methods, projection-based methods and multi-fidelity methods. Luo 
et al. (2023) recommended using data-driven surrogate models for 
groundwater decision support problems (including remediation design, 
monitoring network design). Among them, machine learning methods 
like support vector machine (Ouyang et al., 2017) and artificial neural 
networks (Secci et al., 2022a; Zhou and Tartakovsky, 2021) have also 
been widely used. Recent Deep Neural network (DNN) surrogates have 
shown particular strength in high-dimensional groundwater problems 
that traditional methods fail to handle due to the curse of dimensionality 
(Mo et al., 2019). Notably, convolutional architectures excel at high- 
dimensional inverse modeling (e.g., simultaneous source and conduc
tivity identification), while long short-term memory (LSTM) models 
perform exceptionally well in temporal contaminant forecasting (Li 
et al., 2021). Further, novel generative adversarial networks have been 
used to construct surrogates (Deng et al., 2025).

Recent advancements in multi-fidelity surrogate modeling integrate 
data from varying fidelity levels to boost accuracy and efficiency in 
computationally demanding scenarios. Giselle Fernández-Godino et al. 
(2019) provided decision criteria for multifidelity surrogates, empha
sizing benefits in high-fidelity data scarcity, Lee et al. (2024) fused 
coupled and decoupled models, achieved increased surrogate accuracy 
under fixed budgets. Notably, (Lee et al., 2025) developed an adaptive 
quality-based multi-fidelity (AQBMF) framework that ranks and com
bines low-fidelity sources, surpassing traditional methods in bench
marks by filtering low-quality data and optimizing ensembles. Similarly, 
(Lee et al., 2026) utilized multi-fidelity techniques with similar low- 
fidelity data from different conditions, achieving up to 60% efficiency 
improvements and 15–20% gains in energy density.

Although surrogate models have been widely applied in hydrogeol
ogy, their use in the specific area of P&T design is limited. Currently, 
only a few studies have been identified that develop surrogate models 
for P&T system design: a Kriging model (Qiang et al., 2024; Zhang et al., 
2022), neuro network models (Majumder and Eldho, 2020; Song et al., 
2025), and the analytic element method (Matott et al., 2006), as well as 
several surrogates (Luo and Lu, 2014). The lack of systematic perfor
mance comparisons obscures the applicability of various surrogate 
methods to P&T design. On the other hand, current studies often rely on 
a single surrogate model (Qiang et al., 2024; Song et al., 2025), while 
(Forrester and Keane, 2009) emphasized that no surrogate method 
universally outperforms others, as each has unique strengths. Consid
ering this, (Matott et al., 2006; Xing et al., 2019) suggest employing 
multiple surrogate models simultaneously. (Viana et al., 2009) proposed 
a framework using multiple surrogate models to enhance prediction 
accuracy.

This study aims to address the identified limitations related to sur
rogate modeling for pump-and-treat scheme design. Firstly, to tackle the 
scarcity of systematic comparisons, we assess the prediction accuracy of 
five common surrogate techniques: Kriging, Polynomial Interpolation, 
Support Vector Regression, Random Forest, and Deep Neural Network. 
Secondly, we investigate the joint use of these surrogate models: each 
trained model is integrated with optimization algorithms to search for 
the P&T scheme with the lowest residual contamination. The removal 
efficiencies of all surrogate models are compared to identify the most 
effective approach. This research represents an innovative exploration 
in pump-and-treat technique through novel testing of a multi-surrogate 
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framework. This approach delivers practical benefits directly for 
enhancing remediation efficiency and reducing environmental impact. 
The novel framework and findings may offer valuable insights for 
simulation-optimization applications in fields like aquifer character
ization and contaminant source identification.

2. Methods

This study employs a simulation-optimization framework to opti
mally design the pump-and-treat (P&T) schemes. As illustrated in Fig. 1, 
the P&T scheme optimization process involves three steps.

First, a numerical simulation model is developed to simulate the 
groundwater flow and contaminant transport processes during the 
pump-and-treat operation. The operation scheme parameters, including 
well locations and pumping rates are randomly generated and incor
porated into the simulation model to simulate the different contaminant 
removal processes. For each simulation, the final residual contaminant 
mass (normalized) in the synthetic aquifer is collected. These data are 
then compiled and integrated to form a training dataset.

Second, surrogate models are constructed and trained using the 
above training dataset, where the P&T configuration (well locations and 
pumping rates) are input and the residual contaminant is the output. 
This process enables the models to capture patterns from the data and 
replace the computationally intensive numerical simulation model. Five 
distinct surrogate models—Kriging, Polynomial Interpolation (Poly
Interp), Support Vector Regression (SVR), Random Forest (RF), and 

Deep Neural Networks (DNN)—are tested to evaluate their accuracy. 
These models are selected because they have been used and proven to be 
effective in previous hydrogeological applications, also because these 
methods have various functioning mechanisms.

Third, an optimization algorithm is implemented, to determine the 
operation scheme with minimized the total contaminant mass in the 
synthetic aquifer. In this work, the genetic algorithm is employed as the 
optimization method. Because it is found to be able to effectively handle 
the complex, nonlinear nature of P&T design, to explore a wide range of 
well locations and pumping rates, as demonstrated in previous studies 
(Chang et al., 2007; Rudiyanto et al., 2023).

At last, the optimization results from different surrogate models are 
compared to establish a robust multi-surrogate simulation-optimization 
framework. The derived optimal well locations and pumping rates are 
subsequently validated through numerical simulation to assess their 
actual performance.

2.1. Numerical simulation model

2.1.1. Governing equations
The groundwater system was numerically modeled using a two- 

dimensional porous medium formulation. The governing equations for 
fluid flow and contaminant transport are implemented through the 
following coupled processes. The steady-state flow field was determined 
by combining Darcy's law with the continuity equation: 

u = − T∇h (1) 

Fig. 1. The pump-and-treat scheme optimization using the multiple-surrogate simulation-optimization framework.
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∂
∂t
(ρε)+∇⋅(ρu) = Qs (2) 

where h is the hydraulic head (L), Qs is the mass source term (M/TL3), T 
is hydraulic conductivity (L/T), u is the flow velocity vector (L/T), ε is 
porosity (/), ρ is fluid density (M/L3). The derived velocity field was 
subsequently applied in the advection-dispersion equation: 

∂
∂t
(εC)+u⋅∇(θC) = ∇⋅(ε(Dc +uα)∇C )+R (3) 

where C is concentration (M/L3), Dc is the diffusion coefficient (L2/T), R 
is the source term (M/TL3), α is the dispersivity term (L). The partial 
differential equation system is discretized and solved numerically using 
COMSOL Multiphysics® simulation softwares (Multiphysics, 1998), 
employing the finite element method with appropriate boundary con
ditions and convergence criteria.

2.1.2. Setups
Section 2.1.2 Setups describes the configuration of the synthetic 

aquifer and the P&T system design. The aquifer properties, emission 
details, and P&T operation parameters are comprehensively summa
rized in Table 1. The two-dimentional synthetic aquifer is modeled as a 
6 km × 6 km region (Fig. 2a) and a 2 km × 2 km site (Fig. 2b). We set up 
a relatively small site because when applied to larger regions, pump- 
and-treat (P&T) may face limitations in terms of operational costs and 
remediation efficiency. A 6 km × 6 km buffer region surrounds the site 
to simulate external conditions; the geometric center is at (0,0) in a 
Cartesian coordinate system. The aquifer has a thickness of 30 m, 
Porosity (ε) is 0.25, and fluid density (ρ) is 1000 kg/m3.

As shown in Fig. 2, the hydraulic conductivity (K) field is assumed to 
be log-normally distributed, ranging from 10− 6 to 10− 4 m/s. The het
erogeneous conductivity field was generated using the geostatistical 
toolbox of the “GSTools Python library” developed by (Müller et al., 
2022). A Gaussian variogram model was applied with a variance of 1 as 
the original conductivity field (logK0). The spatial correlation length is 
assigned to be 100 m. In the GSTools algorithm, the correlation length of 
100 m represents moderate spatial variability: for distances <100 m, 
adjacent grid points exhibit stronger similarity in K values. Thus we can 
foster some stagnant zones that trap contaminants and slowly release. To 
adjust the values into specific bounds of (logKmin = − 6 and logKmax =

− 4 m/s), the field logK0 then undergoes a global min-max scaling using 
the formula: 

logKscaled =
logK0 − min(logK0)

max(logK0) − min(logK0)
× (logKmax − logKmin)+ logKmin

(4) 

In this scaling operation, every value is transformed proportionally 
without truncation and without altering relative spatial patterns. This 

allows convenient control over the maximum and minimum values.
To ensure the hydrogeological parameters for the synthetic aquifer 

are well-justified, we selected realistic values reflecting practical con
ditions. The aquifer dimensions, thickness, porosity, and fluid density 
represent typical characteristics of contaminated sandy aquifers. The 
hydraulic conductivity range and spatial correlation setups align with 
common field-scale log-normal distributions. The hydraulic gradient, 
calculated as (90 m - 60 m) / 6000 m = 0.005 (0.5%), mirrors gentle 
slopes found in natural aquifer systems.

Because the positions and pumping rates of each well remain con
stant throughout the entire extraction process in our design, we made a 
simplification assumption and implemented steady-state flow simula
tion. While it does not capture early transient drawdown or flow di
rection changes, we focus more on the overall extraction process. 
Steady-state flow is driven by constant-head boundary conditions: a 
higher hydraulic head (h = 90 m) is arranged at the left boundary (x =
− 3000 m) and a lower hydraulic head (h = 60) m is at the right 
boundary (x = 3000 km). Thus, a left-to-right hydraulic gradient is 
established. No-flow conditions are applied at the top and bottom (y =
3000, − 3000 m) boundaries. The initial head field was set with a linear 
interpolation between 90 m at the left boundary and 60 m at the right 
boundary, ensuring a smooth transition across the domain. The steady- 
state groundwater flow dynamics are simulated in the synthetic aquifer 
system under prescribed boundary conditions.

The synthetic aquifer is assumed to be contaminated by five fac
tories. As shown in Fig. 3, three contaminants (C1, C2, C3) are intro
duced by these factories: the first two factories emitting C1, the third and 
fourth emitting C2, and the last one emitting C3. All of the setups about 
the factories are randomly generated, including locations, emission 
rates, concentrations. The release durations are assumed to be 10 years 
for these factories.

The concentration fields in Fig. 3 will be used as the initial condition 
of our P&T system. Note that the emission concentrations for these 
factories are 77, 50, 17, 30 and 120 mol/m3, respectively. The first two 
factories represent average conditions, whereas the third and fourth 
exhibit lower concentrations but cover larger areas. In contrast, the fifth 
factory shows higher concentrations within a smaller area. The con
taminants with varied concentrations and spatial distributions should 
compose a complex contamination scenario. This complexity poses 
challenges for P&T design. However, addressing this complexity should 
enhance the significance and practical utility of this paper.

In this site, we have set up five pumping wells to extract the above 
contaminants. The locations of five wells can be anywhere within this 
site. Constrained by operational cost, the total flow rate of five pumping 
wells is fixed at 8000 m3/day. The flow rates are distributed among the 
five wells in varying proportions. This results in 15 adjustable parame
ters: for each well, two coordinates (x, y) define its location, and one 
proportion determines its flow rate, where the actual flow rate is 
calculated by multiplying the proportion by 8000 m3/day. These two 
kinds of parameters are also the key adjustable parameters for 
enhancing remediation efficiency in previous studies (Huang and 
Mayer, 1997; Song et al., 2025).

The P&T operation are simulated for a duration of 10 years and the 
contaminant removal result can be evaluated. The well locations and the 
flow rate proportions for the five wells will be adjusted collectively to 
optimize removal efficiency.

2.1.3. Performance metrics
In this work, the total residual ratio (Rresidual) is adopted as the 

contaminant removal performance metric for various pump-and-treat 
(P&T) schemes. The metric is defined as: 

Rresidual =
∑3

i=1

MCi ,residual

MCi ,initial
=

MC1 ,residual

MC1 ,initial
+

MC2 ,residual

MC2 ,initial
+

MC3 ,residual

MC3 ,initial
(5) 

where MCi,residual represents the residual mass of contaminant Ci after 

Table 1 
Hydrogeological and Operational Parameters for P&T Scheme Optimization.

Parameter Value/Description

Aquifer Dimensions 2 km × 2 km (4 km2) site, 6 km × 6 km buffer
Aquifer Thickness 30 m
Porosity (ε) 0.25
Fluid Density (ρ) 1000 kg/m3

Hydraulic Conductivity 
(K)

Log-normally distributed (Spatial correlation 100 m), 
10− 6 to 10− 4 m/s

Boundary Conditions Left: h = 90 m; Right: h = 60 m; Top/Bottom: No-flow

Contaminant Sources
5 factories emitting, three contaminant categories C1, C2, 
C3

Release Duration 10 years
P&T Wells 5 wells, locations adjustable within site
Adjustable Parameters 15 (2 coordinates +1 flow proportion per well)
P&T Operation 

Duration
10 years
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remediation; MCi,initial denotes the initial mass of contaminant Ci. The 
main reason for choosing this metric is that there are three contaminants 
(C1, C2, C3) from five factories, each contaminant varies in concentra
tion and may exhibit severe toxicity. This metric emphasizes the pro
portional reduction of each contaminant; thus, the low-concentration 
contaminants are not overlooked.

The alternative metric, total residual contaminant mass (Mtotal =

MC1 + MC2 + MC3), is not used. Because, when optimization relies on the 
total mass of three contaminants, the remediation would prioritize 
contaminants of larger quantity and may neglect the contaminants with 
lower masses.

2.2. Surrogate models

This subsection introduces five surrogate models aimed for pump- 
and-treat (P&T) optimization: Kriging, Polynomial Interpolation, Sup
port Vector Regression (SVR), Random Forest (RF), and Deep Neural 
Network (DNN). The five surrogate models were selected from three 
distinct methodological families: (1) geostatistical interpolation (Krig
ing), (2) deterministic algebraic interpolation (Polynomial), and (3) 
machine learning approaches (SVR, RF, DNN). The mechanism and 
strengths of these models are outlined here in the following subsections. 
Note that Kriging, Polynomial, SVR, and RF models have been imple
mented on MATLAB R2022b, DNN has been implemented on Python 3.9 
with PyTorch Deep Learning toolbox.

These models are trained and validated using the dataset generated 
by the numerical model, with input features comprising the 15 adjust
able parameters: x and y coordinates and flow rate proportions for each 
of the five pumping wells. The output is the total residual ratio (Rresidual, 
Eq. 4), which reflects the overall remediation efficiency. After training, 
the surrogate models can provide highly efficient predictions of reme
diation efficiency (Rresidual) based on these inputs with specified values. 
So the surrogates can replace the numerical model for rapid P&T 
optimization.

2.2.1. Kriging
Kriging has been widely adopted in geostatistical interpolation and 

has recently gained prominence as an effective surrogate modeling 
technique for groundwater systems. The Kriging interpolation process is 
shown in Fig. 4, where values at unmeasured locations (estimated 
values) are predicted based on measured data points (measured values).

When it comes to mathematical formulation, Kriging is mainly 
composed of a polynomial trend and a random process. The polynomial 
trend (low-order linear or quadratic polynomial) is employed to capture 
the global mean response of the system; the random process accounts for 

local variations by quantifying spatial correlations that decrease with 
distance with covariance functions. Together, they enable Kriging to 
provide more accurate interpolation predictions. Kriging can be effec
tive for approximating complex, spatially correlated systems with sparse 
data. The Kriging method assumes a constant mean and variance across 
the domain. This may oversimplify complex aquifer heterogeneities and 
lead to smoother predictions that underestimate the extreme or irregular 
distribution of parameters. More detailed explanations of the kriging can 
be referred to (Zhang et al., 2022).

In this study, Kriging surrogate models were implemented using 
Gaussian Process Regression (GPR) in MATLAB. The hyperparameters 
included a squared exponential kernel function to capture spatial cor
relations (akin to ordinary Kriging), feature standardization set to true 
for normalization. Training was performed on 1000 samples, with 
validation on 200 samples to evaluate performance metrics such as 
RMSE and R2.

2.2.2. Polynomial interpolation
Polynomial Interpolation surrogate offers a mathematically 

straightforward approach to approximate numerical model responses. 
This deterministic method constructs a single algebraic polynomial that 
passes through all training data points. While lower-order polynomials 
(n ≤ 3) are typically employed for practical applications to avoid Run
ge's phenomenon (Burden and Faires, 2011).

In this work, we assigned that the polynomial function in the sur
rogate model takes the form: 

f(x) = β0 +Σn
i=1βixi +Σn

i=1βi,ix2
i +Σn− 1

i=1 Σn
j=i+1βi,jxixj (6) 

where x = (x1, x2, …. xn) represents the 15-dimensional input vector (e. 
g., well locations, pumping rates), and β0, βi, βi,i, βi,j, are coefficients for 
the constant, linear, squared, and interaction terms, respectively. These 
coefficients are determined by fitting a linear regression model to the 
training data, the least-squares error would be minimized to ensure 
accurate approximation of the numerical model outputs. Polynomial 
Interpolation assumes the system response can be approximated by a 
smooth, continuous polynomial function. Thus, it may make less accu
rate predictions for highly nonlinear or discontinuous relationships in 
complex groundwater systems.

In this study, polynomial regression surrogate models were imple
mented in MATLAB. The model incorporated second-order polynomial 
features, consisting of linear terms for each of the 15 inputs, squared 
terms for each input, and pairwise interaction terms between inputs. We 
employed the Iteratively Reweighted Least Squares (IRLS) with the 
default ‘bisquare’ weight function and a tuning constant of 4.685, so that 
observations with large residuals are downweighted iteratively until 

Fig. 2. Spatial distribution of hydraulic conductivity (K) field.
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convergence.

2.2.3. Support vector regression
Support Vector Machine (SVM) is a powerful supervised learning 

algorithm developed by (Cortes and Vapnik, 1995) based on statistical 
learning theory and structural risk minimization. This method is origi
nally designed for binary classification. As shown in Fig. 5, it works by 

identifying a decision boundary (hyperplane) that maximizes the margin 
between classes. Fig. 5 exhibits a classification question where the 
bondary is linear. For nonlinear problems, kernel functions (e.g., 
Gaussian or polynomial) would be used to implicitly transform data into 
a higher-dimensional space; then complex nonlinear relationships 
would be transformed into linearly separable problems. This elegant 
mathematical framework guarantees a global optimum through convex 

Fig. 3. The initial contaminant plume distribution caused by five factories (The pink points represents factory locations). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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optimization (Boyd, 2004; Boyd et al., 2011). Thus, the SVM method has 
been recognized as both theoretically sound and computationally effi
cient (Bennett and Parrado-Hernández, 2006; Vapnik, 2000).

Support Vector Regression (SVR) is the extension of SVM's principles 
to regression tasks. Instead of maximizing class separation, SVR fits a 
hyperplane within a tolerance margin (e-insensitive tube), penalizing 
only deviations larger than e (as shown in Fig. 6). SVR is able to handle 
high-dimensional data and sparse samples. It has been recorded to be 
effective for predicting contaminant concentrations in groundwater 
systems (Ouyang et al., 2017). SVR assumes that complex relationships 
can be captured by mapping data into a higher-dimensional space via 
kernel functions. Thus it exhibits flexibility in modeling more nonlinear 
patterns. This flexibility is expected to better handle irregular or non- 
smooth parameter distributions, compared to Kriging's assumptions.

In this study, Support Vector Regression model employed a Gaussian 
(RBF) kernel function to handle nonlinear relationships. Following a 
trial-and-error test, the optimal parameters were determined as follows: 
Cbox = 10.00 (the box constraint, a regularization parameter that bal
ances low training error with model complexity by constraining the 
Lagrange multipliers), Epsilon = 0.01 (the epsilon-insensitive margin 

width, which establishes a tolerance band around predictions where 
deviations are not penalized; lower values heighten sensitivity to er
rors), and KernelScale = 1.00 (the scaling factor governs the kernel's 
sensitivity to input variations).

2.2.4. Random Forest
Random Forest (RF) is an ensemble machine learning method that 

constructs multiple decision trees during training and outputs their 
averaged predictions (Breiman, 2001). As shown in Fig. 7, each decision 
tree functions as a hierarchical predictor that recursively partitions the 
feature space through optimized binary splits, where the splitting 
criteria maximize information gain for classification tasks or minimize 
prediction error for regression. Predictions are generated by propagating 
input features through each tree's split rules until reaching terminal 
nodes containing the final output values. RF assumes that the averaging 
predictions from multiple decision trees can effectively capture complex 
and heterogeneous patterns. This adaptability may improve predictive 
accuracy for non-linear problems.

The model's robustness stems from two fundamental randomization 
techniques: bootstrap aggregating, where individual trees train on 
randomly sampled subsets of the original data, and feature subspace 
selection, where each split considers only a fraction of available fea
tures. Key hyperparameters requiring optimization include the number 
of constituent trees, maximum allowable tree depth, and minimum 
samples required for node splitting, typically tuned through cross- 
validation procedures. This ensemble approach enables RF to effec
tively model complex, high-dimensional relationships characteristic of 
groundwater systems (Z. Wang et al., 2024). In this study, each Random 
Forest surrogate model consisted of 1500 decision trees. They were 
configured for regression mode and all available predictors were used at 
each split for feature selection. This implemented bootstrap aggregating 
without random subspace sampling. A minimum leaf size of 5 is 
implemented.

2.2.5. Deep neural network
Artificial Neural Networks (ANNs) represent a foundational machine 

learning approach inspired by biological neurons. Artificial Neural 
Networks (ANNs) are biologically inspired computational systems that 
process information through interconnected layers of neurons, as shown 
in Fig. 8. In each neuro, there would be weighted summation of inputs, 
bias addition, and nonlinear transformation via activation functions.

The DNNs assume that complex relationships can be learned through 
layered transformations by the neurons and the nonlinear activation 
functions. The network's predictive output is refined through back
propagation, where prediction errors are propagated backward to adjust 
weights and biases via gradient descent, progressively minimizing the 

Fig. 4. Schematic of Kriging interpolation.

Fig. 5. Schematic of Support Vector Machine.

Fig. 6. Schematic of Support Vector Regression. Fig. 7. Schematic of Random Forest.
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discrepancy between simulated and predicted contaminant distribu
tions. While shallow networks suffice for linear relationships, deeper 
architectures (more than 3 hidden layers) demonstrate superior per
formance by capturing complex nonlinear interactions (Zhou et al., 
2021).

In this study, Deep Neural Network surrogate models were imple
mented in PyTorch. It included eight hidden layers with neuron counts 
of 4800, 2400, 2400, 1200, 1200, 600, 600, and 120, respectively. Leaky 
ReLU activation functions were used with a negative slope of 0.01 for 
nonlinearity. Training employed the Adam optimizer with a fixed 
learning rate of 0.00005. Mean squared error served as the loss function. 
The model with the lowest validation loss was saved.

2.2.6. Comparative analysis of surrogate models
The above surrogate methods have different working mechanisms, 

thus different suitable application scenarios. In the comparative study 
by (Villa-Vialaneix et al., 2012, the task is approximating N2O fluxes and 
N leaching), Kriging is more accurate than other models for small 
datasets; and for large datasets, random Forest is more accurate than 
SVR and Kriging; but SVR handles noisy data well. In the review work by 
(Razavi et al., 2012), they noted that Kriging is more effective for low- 
dimensional problems; Polynomials can be used as global surrogates 
(fitting the entire input space) or in local optimization contexts; neuro 
network is highly effective for non-linear, complex response surfaces, it 
is the most used surrogate in the reviewed studies. According to the 
input dimension (D) and training data sample size (n), (Forrester and 
Keane, 2009) provided suggestions on the application of the different 
surrogates.

As noted by (Asher et al., 2015), such comparison literatures are 
numerous. We cannot list all their results. So, we provide Table 2 to 
summarize the studies that used these models (at least two papers), 
application areas, and suggested application conditions. Note that the 

suggestions are preliminary, and it still requires actual testing to 
determine the best model for a specific application scenario. Readers 
interested in further details can refer to the cited studies.

However, Forrester and Keane (2009) emphasized that no surrogate 
method universally outperforms others, results will depend on the 
application scenario, and factors such as the input dimension and the 
size of training set (Breiman, 2001). So Viana et al. (2009) suggested 
using multiple surrogates in a single framework. Matott and Rabideau 
(2008) have proved that using multiple surrogates improved the opti
mized objective function and reduced runtime.

For our problem of P&T system optimization, the input dimension is 
15 (D = 15), the training dataset has 1000 samples (n = 1000), and the 
problem complexity/nonlinearity is somehow uncertain. Thus, all five 
models is potential to make effective predictions.

2.3. Genetic algorithm for optimization

In this study, a Genetic Algorithm (GA) was employed to optimize 
pump-and-treat schemes for groundwater remediation, targeting the 
minimization of residual pollutant mass across three distinct contami
nants. GA is an evolutionary optimization technique inspired by natural 
selection processes. It could effectively address complex, non-linear 
problems in hydrogeology by navigating high-dimensional parameter 
spaces (Maier et al., 2014; Zheng et al., 1999) and escaping local optima 
(Singh and Datta, 2006).

Unlike gradient-based methods which rely on local gradient infor
mation and may converge to local optima in non-convex problems, GA's 
evolutionary approach could effectively handle the nonlinearity and 
multimodality of P&T optimization problem. Although GA requires 
more iterations of the forward model, the use of low-cost surrogate 
models significantly reduces computational expense. Gradient-based 
methods may struggle with the discontinuous relationships in our P&T 
problem. So the GA method is more suitable for this study.

In our implementation, the population of each generation comprises 
1000 candidate solutions. Each candidate solution is a 15-dimensional 
vector of the parameters including well locations and pumping rates. 
The objective function to be minimized is the normalized residual 
contaminant (Rresidual). Our implementation of the GA follows the 
following procedures: 

(1) Initialization: The initial population is established by randomly 
generating 1000 individuals. Each individual represents a po
tential P&T operation scheme defined by the 15 parameters.

(2) Selection: The surrogate models calculate the total residual ratio 
(Rresidual) to evaluate contaminant removal efficiency for all P&T 
schemes in the current population. Selection probabilities are 

Fig. 8. Schematic of artificial neural network (modified after (Wang et al., 
2024a, 2024b)).

Table 2 
Comparison of surrogate models and application suggestions. (D represents input dimension, n represent training data size).

Model Successful Applications Application areas. Suggested application 
conditions

Kriging (Garcet et al., 2006; Qiang et al., 2024; Zhang et al., 2022)
Nitrate Leaching Process Modeling, groundwater 

remediation, contaminant source identification, pump-and- 
treat optimization etc.

D < 20, n < 500. 
Applicable to complex 
non-linear problems;

Polynomial 
Interpolation

(Singh and Verma, 2019; Zaghiyan et al., 2021) Groundwater level, water quality.
D 〈20,n〉 500. 

For simple problem with 
smooth variations.

Support Vector 
Regression (SVR)

(Ly et al., 2013; Yoon et al., 2011) Groundwater level prediction, Rainfall data analysis

D > 20, n > 500. 
Robust for nonlinear, 
high-D input. Noised 

data.

Random Forest (RF) (Pham et al., 2020; Schoppa et al., 2020) Stream and flood discharge forecast.
n > 500. 

Applicable to complex 
non-linear problems

Deep Neural 
Network (DNN)

(Chen et al., 2020; Dawson and Wilby, 1999; Deng et al., 2024; 
Secci et al., 2022b; Somogyvári et al., 2017; Yoon et al., 2007; 

Zhi et al., 2024)
Heat transfer in fractured media, contaminant transport.

Most widely adopted; 
For various scenarios with 

large datasets
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then computed using a fitness-proportional formula; individuals 
with lower Rresidual values (indicating better remediation perfor
mance) have higher probabilities of being selected. Also note that 
the individuals with lower Rresidual values may be selected mul
tiple times during sampling. This implements the survival-of-the- 
fittest principle.

(3) Reproduction: Using the selected individuals from the previous 
step, the new generation is created through four distinct yet 
complementary mechanisms: (i) Elitism preservation: 250 
selected individuals are directly transferred to the next genera
tion without modification; (ii) Mutation: 250 new individuals are 
generated by applying controlled Gaussian perturbations (σ =
0.1) to randomly selected parent solutions; (iii) Crossover: 250 
offspring are produced through uniform crossover of parameter 
sets from parent pairs; (iv) Diversity injection: 250 completely 
new solutions are randomly generated within the defined 
parameter bounds to maintain population diversity. Together, 
these four steps produce a new generation comprising 1000 
individuals.

(4) Evaluation: The Rresidual scores of the new population are calcu
lated using surrogate models, with the lowest score recorded as 
an indicator of the GA's convergence progress.

(5) Iteration: Steps 2–4 are repeated until a convergence is achieved. 
The P&T strategy is optimized for minimizing the total residual 
ratio (Rresidual) across the three contaminants.

The GA algorithm is run independently for each surrogate model 
(Kriging, PolyInterp, SVR, RF, DNN) to generate the optimized P&T 
parameters. To remove the effect of random initial population on opti
mization results, we performed 20 independent optimization runs (each 
with a different random initialization) for each surrogate. The resulting 
P&T parameters were evaluated in the high-fidelity simulation model, 
and the best-performing scheme (lowest true residual contaminant 
mass) from these runs was selected as the representative result for that 
surrogate. Finally, the overall best P&T scheme was identified by 
comparing the selected schemes across all surrogates.

3. Results

3.1. Numerical simulation model

We conducted 1200 simulations, generating a dataset with 1000 
samples for training and 200 samples for validating the prediction ac
curacy of these surrogate models. These datasets were created using the 
synthetic simulation model (Section 2.1), with inputs consisting of 15 
randomly generated adjustable parameters: the x, y coordinates and 
pumping rates for five wells. Outputs are the total residual contaminant 
percentage values of three contaminants, ranging from 20% to 200% 
(Fig. 9). A significant number of values distributed around 60–80%. The 
range is wide, thus random P&T configurations may yield poor perfor
mance. Note that from the training-validation dataset, the minimum 
residual percentage of the three contaminants is 20.278%. It will be 
interesting to check whether our optimization method could find a 
configuration with residuals lower than 20.278%.

One example of the simulated contaminant transport process by the 
numerical simulation model is shown in Fig. 10. The simulation tracks 
the migration of three contaminants—C1, C2, and C3—over a 10-year 
period. As pumping wells extract groundwater, the plumes are drawn 
toward the wells.

The shape of the contaminant plume changes over time. At the 
beginning (Fig. 10a, e, i), they are distributed in round shapes due to 
injection. As pumping starts (Fig. 10b, f, j), the plumes are stretched by 
the pumping wells. The contaminant plumes begin to move toward the 
pumping wells, while the change is minimal. By the 5th year (Fig. 10c, g, 
k), significant pollutant mass has been extracted into the wells. At the 
final frame at 10th years (Fig. 10d, h, l), the contaminant plume 

develops into a band-like pattern, distributed near the pumping wells. 
Contaminants C1 and C2 exhibited higher residual levels near the 
pumping wells, while C3 exhibits comparatively less residual. Indicating 
more effective remediation. Have a basic knowledge about these plume 
evolutions may also help contaminant remediation efforts.

It is rather challenging to determine the optimal pump-and-treat 
(P&T) scheme via reasoning. On one hand, it is possible that using 
dispersed well locations may be advantageous, as they can cover a 
broader area of the plume. On the other hand, it is also possible that 
using concentrated well placement can be advantageous, as it could 
enhance extraction efficiency in high-concentration zones. To overcome 
this confusion, we need the simulation-optimization techniques to 
determine the most effective P&T strategy.

3.2. Surrogate model

3.2.1. Overall validation
As mentioned in Section 3.1, 1000 datasets are used to train the 

surrogate models (including Kriging, Polynomial Interpolation, Support 
Vector Regression, Random Forest, and Deep Neural Network). The 
performance of these five models was evaluated using 200 validation 
datasets. This evaluation has been realized via two key metrics: Root 
Mean Square Error (RMSE) and correlation coefficient (Corre). The 
validation results are shown in Fig. 11 and Table 3. RMSE measures the 
average error by comparing the predictions by the surrogate models and 
the numerical simulation outputs. A lower RMSE indicates more precise 
predictions. The correlation coefficient assesses the linear relationship 
between predictions and numerical simulation outputs. A high Corre 
ensures accurate representation of complex plume dynamics. Using both 
metrics together ensures models are precise (low RMSE) and capture key 
patterns (high Corre).

As shown in Table 3, among the various evaluated surrogate models, 
Deep Neural Network (DNN) performed the best, with the lowest RMSE 
value of 0.1503 and the highest correlation coefficient of 0.8761. The 
predictions are more approximate to the actual data, as shown in 
Fig. 11e. Kriging and Support Vector Regression showed comparable 
performance: the RMSE values (0.1604 and 0.1623) and Corre values 
(0.8597 and 0.8604) are not far from DNN.

Polynomial Interpolation is less accurate, with an RMSE of 0.1794 
and Corre of 0.8220. The Random Forest model is the least effective, 
with the highest RMSE of 0.2125 and the lowest Corre of 0.7342. As 
shown in Fig. 11d, it is clear that the predictions show more substantial 
deviations from the ‘y = x’ line.

3.2.2. Scenario-specific performance analysis
Recognizing that “no surrogate modeling method universally 

Fig. 9. Histogram of total residual contaminant percentages (Rresidual) for 
various P&T configurations.
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outperforms others, as each possesses unique strengths and weaknesses” 
(Forrester and Keane, 2009), we checked on all of the single instances of 
the validation set to reveal the scenario-dependent performance varia
tions. Specifically, we recorded the frequency at which each model 
achieved top performance (lowest prediction error) for each individual 
validation instances. The results are shown in Fig. 12 and Table 4.

The results demonstrate three model, SVR, RF and DNN, demon
strated comparable effectiveness in achieving optimal predictions: 47, 
47 and 46 good instances respectively. Polynomial Interpolation showed 
moderate performance, it has been the best for 34 validation cases. 
Kriging is the least frequent top-performer for only 26 instances.

Interestingly, despite DNN exhibited overall best validation perfor
mance in subsection 3.2.1, it performed best in only 46 instances. This 
means it is definitely not universally optimal. Notably, Kriging showed 
comparatively good accuracy in the overall validation, but it only per
formed best for just 26 instances; the Random Forest model, showed 
comparatively poor accuracy (Table 3), but it performed best for 47 
instances, which is actually high. These findings reflect that each model 
possesses unique scenario-dependent strengths. This aligns with 
(Forrester and Keane, 2009).The results suggest that we should jointly 
use the multiple surrogate models, rather than relying on a single ‘best’ 
model” within the subsequent inversion framework.

It is possible that the residual contaminant mass exhibit highly non- 
linear characteristics with the variation of the P&T configuration 
parameter space (15 adjustable parameters: well locations and pumping 
rates). For the three models (SVR, RF, and DNN) that excel in scenarios 
with complex, nonlinear relationships, so they have more top- 
performing instances (47, 47, 46). PolyInterp, assuming a smooth 
polynomial function, performs well in simpler, less nonlinear configu
rations, resulting in fewer top instances (34). Kriging's homogeneity 

assumption limits its ability to model complex, nonlinear P&T out
comes, explaining its lowest top instances (26).

It is possible that the residual contaminant mass exhibits highly 
nonlinear characteristics with variations in the P&T configuration 
parameter space (15 adjustable parameters: well locations and pumping 
rates. The three models SVR, RF, and DNN are better at treating complex 
and nonlinear scenarios because the assumption of these models. Thus 
they provided more top-performing instances (47, 47, 46). The Poly
Interp model assumes a smooth polynomial function, thus it provided 
fewer top instances (34). Kriging's homogeneity assumption limits its 
ability to model complex, nonlinear P&T outcomes, explaining its lowest 
top instances (26).

3.3. Optimization results

Table 3 presents the inversion results of groundwater remediation 
schemes obtained from five surrogate models, including optimized well 
coordinates (X, Y) and corresponding pumping rates. The remediation 
effectiveness, total residual contaminant values Rresidual, from five 
optimization processes are also provided. The spatial distribution of 
these well locations is visually represented in Fig. 13, where each dot 
indicates a well position, and the size of the dot corresponds to the 
pumping rate, with larger dots signifying higher pumping rates.

Via the total residual contaminant (Rresidual) value, we check the 
cleanup effectiveness of each optimized scheme. Using Kriging, we ob
tained the highest total residual of 21.69%, which is least effective 
among the five. PolyInterp achieves the lowest total residual of 17.48%, 
which is the most successful pollution cleanup strategy. For the last 
three models, SVR, Random Forest and DNN, the performances are 
moderate, Rresidual = 19.31%, 19.41% and 19.24% respectively. Despite 

Fig. 10. Contaminant Transport process during the P&T process.
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all schemes exhibits optimized results, PolyInterp provides the best 
pollution cleanup outcome, with the lowest residual.

The scheme offered by the PolyInterp model (Fig. 13b) is kind of 
special, it suggested the pumping flow rate of well 3 should be reduced 

to a near-negligible value (80 m3/day). This value is merely 1% of total 
pumping rate. This result implies that it may be unnecessary to imple
ment this well 3. If we can reduce the quantity of pumping wells, the cost 
for drilling and installing pumping equipment would be saved by 20%. 
The other surrogate model didn't offer such suggestions. Remarkably, 
this simplified configuration maintains superior remediation perfor
mance: the residual amount (Rresidual) of 17.48% is lower than the best 
results from alternative models (Rresidual range: 19.2–21.7%). It is well 
recognized that P&T systems requires high operational costs due to long- 
term pumping and well maintenance. From an operational cost 
perspective, eliminating one pumping well significantly reduces 
ongoing expenses. Thus, it would be more cost-effective and practical for 
real-world P&T system implementation.

Fig. 11. The scatter plots of the validation results of five surrogates.

Table 3 
The validation results of five surrogates.

Models RMSE Corre

Kriging 0.1604 0.8597
PolyInterp 0.1794 0.8220
SVR 0.1623 0.8604
RF 0.2125 0.7342
DNN 0.1503 0.8761
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3.4. Additional validation of out-of-distribution performance

To further substantiate the benefits of the multi-surrogate ensemble 
in P&T optimization, we performed 200 additional independent genetic 
algorithm optimization runs for both the proposed multi-surrogate 
approach and a single-surrogate. For the baseline surrogate model, we 
employed the DNN model, who has the highest overall accuracy. All 
optimized P&T schemes are then evaluated on the numerical simulation 
model. The distributions of verified residual contaminant mass are 
presented in Fig. 14 as histograms. According to the Figure, the 
ensemble-surrogate inversion approach exhibits a tighter and more left- 
shifted distribution, which may suggest stronger robustness.

Recall that the training dataset for the surrogates exhibited a mini
mum residual contaminant mass of 20.278%. We adopt this minimum 
residual contaminant mass as a reference threshold: solutions with 
verified residual mass below this threshold are considered as one suc
cessful optimization, as they surpass the best outcome observed during 
surrogate construction. Out of the 200 runs, the single-surrogate (DNN) 
model produced 28 solutions that has a residual concentration below 
20.278%, so the frequency is 14%; while the multi-surrogate ensemble 
achieved this in 64 runs, so the frequency is 32%. This demonstrates that 
the ensemble approach more frequently identifies high-performing 
remediation designs that exceed the reference performance level.

Table 6 summarizes key performance statistics from the 200 verified 
runs. The multi-surrogate ensemble clearly outperforms the strongest 
single-surrogate alternative, delivering a lower median (21.03% vs. 
24.05%), lower mean (21.25% vs. 24.63%), and better optimal solution 
(15.97% vs. 16.91%).

Notably, the globally best design (15.97% residual mass) originated 
from the SVR surrogate rather than the DNN, highlighting the practical 
advantage of incorporating diverse surrogates. These results confirm 
that even a straightforward ensemble strategy provides measurable 
improvements in OOD extrapolation and overall remediation perfor
mance compared to relying on the single best surrogate.

It is interesting to note that the best optimization schemed is pro
duced by the SVR surrogate of the multiple-surrogate optimization 
framework. It happened again that the best solution is not from the DNN, 
which was clearly the most accurate surrogate model in the overall 

validation test.
This result again illustrates the core practical value of the multi- 

surrogate approach. By incorporating this diversity, a simple ensemble 
strategy reliably delivers better and more robust remediation outcomes 
than relying exclusively on the single top-performing surrogate.

4. Discussion

4.1. Advantages of using multiple surrogates

In the field of hydrogeological inversion optimization, surrogate 
models have been widely adopted to approximate complex numerical 
simulations, to reduce the high computational cost. However, the most 
popular practice in previous studies is to adopt a single-model strategy: 
researchers typically construct multiple surrogate models, then validate 
their predictive accuracy and finally select the single most accurate 
model for inversion optimization. This approach rests on the assumption 
that a model excelling in overall validation will also yield optimal results 
in all of the scenarios and in the optimization phase. However, it is not 
the case (Fig. 12 and Table 4). Under our tested conditions, no single 
model consistently outperforms others across all scenarios. Instead, each 
model has the possibility to generate more accurate results than the 
others in the specific cases.

Concerned that this finding might be biased or limited to the specific 
field parameters in the paper, we conducted tests in Appendix A to verify 
its generalizability. Specifically, we performed 8 additional tests using K 
fields with different random patterns and parameters, and we compared 
the performance of the five surrogate models. The results remain 
consistent: no single model consistently outperforms others. Thus, this 
finding is likely to hold true across other new P&T conditions. It may 
also extend to the other area that employ surrogate models.

Previous studies in hydrogeological optimization often relied on 
single surrogate models for pump-and-treat (P&T) system design (Luo 
and Lu, 2014; Majumder and Eldho, 2020; Matott et al., 2006; Qiang 
et al., 2024; Song et al., 2025; Zhang et al., 2022). In contrast, our 
multiple-surrogate framework independently couples models like DNN 
and PolyInterp with the optimization algorithm, comparing their out
comes to identify superior solutions. For instance, while applying the 
conventional single-model strategy would have led us to select the DNN 
model for its higher validation accuracy, while PolyInterp achieved the 
lowest residual (17.48%, Table 5). Thus, it is advantageous to employ 
multiple models to uncover better optimization outcomes (Fig. 12).

We would suggest a multiple surrogate simulation-optimization 
framework: rather than selecting a single model based on validation 
accuracy, we propose constructing multiple surrogate models, and 
conducting separate inversion optimizations for each. By aggregating 
the results and performing a comparative analysis, this strategy has the 
potential to yield a superior outcome. The success of PolyInterp in 
achieving the lowest residual (17.48%) is the valid support for this 
strategy.

We acknowledge that previous researchers (Ouyang et al., 2017; 
Xing et al., 2019) have also developed the ensemble surrogate for 
integrating the strengths of various surrogate models. The ensemble 
surrogate has been achieved by assigning dynamic weights to each 
surrogate model based on their validation performance.

Goel et al. (2007) tested a series of ensemble surrogate method with 
various weighting strategies against individual surrogates and optimi
zation results. They outlined three effective global weighting ap
proaches. First, the weights are assigned based on the errors for each 
surrogate divided by the total errors, this method provides only a modest 
advantage to better models to avoid over-reliance on any one. Second, 
the best surrogate per experimental setup is selected and is given full 
weight. Third, it represents a tunable method balancing individual 
model confidence with averaging to mitigate outliers. Result demon
strated that ensemble surrogate model by the third method exhibited 
higher robustness and accuracy. Importantly, they discovered the “best” 

Fig. 12. Top-performing instances of five surrogates.

Table 4 
Top-performing instances of five surrogates.

Models Top-performing instances

Kriging 26
PolyInterp 34
SVR 47
RF 47
DNN 46
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surrogate changed in over 40% of setups under different experiment 
design conditions. This inconsistency supports our method of doing in
dependent optimizations for each surrogate to protect top performers 
that might get weakened in the “blending” process of weighting. 
(Christelis et al., 2019) also observed that the weighted ensemble sur
rogate model “did not consistently outperform single surrogates”; and 
using the ensemble surrogate for optimization has contributed limited 
improvement to the results obtained by using a single model. We are 
concerned that if we use the ensemble surrogate method, in scenarios 
where a single model excels, its predictive accuracy may be compro
mised by blending with the other inferior predictions. Thus, the multiple 
surrogate simulation optimization framework is favored in this paper. 
By coupling each surrogate independently with the optimization algo
rithm, unique solutions are retained rather than averaged. However, we 

recognize that both ensemble and multiple-model strategies represent 
meaningful innovations. Future work should systematically compare 
these two strategies across various application conditions.

Besides, some prior work have combined P&T with in-situ remedi
ation to enhance contaminant treatment performance and optimize 
costs (Thornton et al., 2014). Our study focuses on P&T alone to assess 
the multiple-surrogate framework, but hybrid cost-saving approaches 
are a valuable future direction. Similarly, while some studies employed 
injection wells in the P&T site. The injection wells could stabilize 
groundwater level and enhance contaminant transport in the remedia
tion process (Chang et al., 2007). Despite that we didn't employ injection 
wells, this omission does not affect our core findings, and injection wells 
could be explored in future work.

Despite its advantages, the multiple-surrogate framework requires 

Fig. 13. Well locations and pumping rates inferred from optimization.
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more computational cost and human effort. Training and optimizing five 
surrogate models significantly increases computational demands 
compared to a single-model approach, as each model requires separate 
training. This also demands substantial human effort for model setup, 
tuning, and validation. However, given the severity of groundwater 
contamination and the high costs of P&T remediation, the improved 
accuracy from identifying superior solutions may justify these efforts.

To generalize our multiple-surrogate framework to other contami
nation sites with varying hydrogeological conditions, several data re
quirements must be met. Detailed aquifer information (structure, 
thickness, boundaries, porosity, heterogeneous permeability) needs site- 
specific characterization via borehole data or geophysical surveys. Ac
curate mapping of the contaminant field's spatial distribution is also 

essential to model plume dynamics. The P&T setup conditions, including 
well number, placement, and pumping rates, must be tailored to site 
realities.

Applying the multiple-surrogate framework to real-world scenarios 
requires addressing practical challenges beyond controlled simulations, 
including (1) limited data availability, as obtaining comprehensive 
aquifer and contaminant data is costly and site-specific; (2) regulatory 
and logistical constraints, such as the pumping implementation in the 
wells. These challenges may demand increased field efforts but ensure 
effective remediation.

4.2. Limitations and perspectives

This study primarily focuses on the development and application of 
multiple surrogate models, alongside the design of inversion strategies. 
It is a numerical study. If it is expected for real-world P&T applications, 
implementing the P&T remediation (using or not using the multiple- 
surrogate method) requires firstly, characterizing aquifer heterogene
ity (via pumping tests or borehole data); and the exact contamination 
concentration distribution by methods like tracer tests or geophysical 
mapping. These are the important basics for P&T system design.

There are several limitations. First, we didn't consider the injection 
wells that reinject the treated-water into the groundwater. Although it is 
not considered in this work, it is entirely feasible to incorporate injection 
strategies, and we plan to explore this in future research. Second, the 
optimization assumes fixed pumping rates. The advantage of dynamic 
adjustments according to real-time conditions are not considered. We 
can implement dynamic adjustments of pumping rates to further 
enhance remediation effectiveness like (Wang and Zheng, 1997). Last 
but not least, no constraints have been incorporated into the optimiza
tion process. For example, it requires to implement a maximum allow
able hydraulic drawdown to prevent aquifer overexploitation. But these 
should not avoid our findings related to multiple-surrogate framework.

In this study, the groundwater flow field induced by pump-and-treat 
operations was approximated as steady-state to improve computational 
efficiency. This approximation does not fully account for transient 
drawdown propagation and the evolving hydraulic gradients during the 
early pumping phase. Consequently, this could lead to modestly faster 
predicted plume migration and earlier capture of contaminant mass 
compared to fully transient simulations. If the proposed method will be 
applied to realistic field-scale problems, it is necessary to adopt fully 
transient flow simulations as the standard approach.

A notable limitation of the present study is the linear min-max 
rescaling applied to the hydraulic conductivity fields. After generation 
by a Gaussian model, each field was rescaled to confine values strictly 
within the range [− 6, − 4] m/s. This setup was implemented to force the 
logK values to desired ranges. However, this may reduce the occurrence 

Fig. 14. Histograms of verified residual contaminant mass from multiple independent GA optimization runs.

Table 5 
Optimized P&T parameters and Rresidual from five surrogate Models.

Surrogate 
models

Wells X (m) Y (m) Pumping Rate 
(1000 m3 / day)

Rresidual 

(%)

Kriging 1 − 223.28 35.68 1.09

21.69
2 272.29 − 138.59 1.77
3 60.08 − 209.51 2.06
4 87.70 − 93.92 2.77
5 7.16 18.36 0.31

PolyInterp 1 119.53 − 68.27 2.78

17.48
2 − 124.81 − 160.80 2.05
3 256.26 − 196.49 0.08
4 − 24.13 76.05 1.32
5 284.09 − 121.05 1.78

SVR 1 − 19.49 18.28 1.91

19.31
2 321.30 − 191.59 2.17
3 9.53 − 108.02 2.56
4 6.53 − 308.15 0.49
5 198.95 − 141.89 0.87

RF 1 − 80.82 − 99.97 1.08

19.41
2 20.82 − 76.25 0.93
3 26.07 − 76.40 1.70
4 181.89 − 100.81 3.40
5 233.01 98.61 0.89

DNN 1 − 205.90 − 76.39 0.55

19.24
2 325.18 − 73.13 1.01
3 12.32 − 177.28 2.31
4 110.65 − 138.63 1.85
5 114.46 − 41.12 2.28

Table 6 
Median, mean, and best verified residual contaminant mass (%).

Method Median Best Mean

Multi-surrogate 21.03 15.97 21.25
Single-surrogate DNN 24.05 16.91 24.63
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and intensity of extreme high- and low-permeability zones. Conse
quently, the rescaled fields may lead to somewhat weaker tailing effects 
in the simulated remediation process. In future work, we plan to avoid 
such artificial bounding by accepting the natural range of each reali
zation, thereby more fully representing the inherent variability of 
randomly generated fields.

Future research aims to develop an adaptive method to address the 
challenge of insufficient field data in real-world groundwater remedia
tion. Given that field data is often limited, we propose using data 
collected during the P&T process to iteratively characterize aquifer 
properties (e.g., heterogeneous permeability) and contaminant distri
butions (e.g., plume dynamics). This approach starts with a preliminary 
remediation scheme based on insufficient data and refines it as new data 
is gathered, optimizing well placement and pumping rates dynamically. 
Integrating this method with real-time monitoring systems, such as 
sensors for contaminant concentrations, can further enhance adaptive 
P&T strategies. This make our method more effective for practical 
applications.

In term of the surrogate models, we recognize the potential for 
integrating advanced lumped or effective upscaling models to enhance 
predictive capabilities. For instance, the multirate mass-transfer 
(MRMT) model effectively upscales anomalous solute transport in het
erogeneous media under radial convergent flow by linking apparent 
capacity coefficients to aquifer anisotropy and connectivity (Pedretti 
et al., 2014). Thus, we plan to develop novel surrogate method that 
integrate with MRMT-like formulations to further improve the optimi
zation framework.

This study employs a 2D synthetic aquifer to simulate horizontal flow 
and contaminant transport, providing a simplified system to efficiently 
evaluate the multiple-surrogate optimization framework. However, real- 
world aquifers are inherently three-dimensional, exhibiting vertical 
variations in hydraulic properties and flow dynamics. Transitioning to a 
3D simulation model would likely introduce key differences in results 
across three main aspects: (1) increased difficulty in characterizing 
aquifer parameters and contaminant distributions, potentially leading to 
inaccuracies if data is limited; (2) the residual contaminant masses 
should be lower because as 3D models capture layered permeability or 
preferential flow paths that may cause some contaminants to remain 
unaffected; (3) the effect of vertical boundary conditions should be 
considered because the upcoming or leakage from overlying/underlying 
layers can significantly influence the fate of contaminant. While our 2D 
model effectively demonstrates the multiple-surrogate framework's ad
vantages, adopting 3D modeling in future work could enhance realism 
for complex aquifer systems. This study is carried out on the idealized 
assumption that aquifer parameters and contaminant fields are perfectly 
known. In the future, we will develop probabilistic approaches to 
address the uncertainties of these information.

5. Conclusions

This study aimed to develop improved surrogate modeling ap
proaches to optimize Pump-and-Treatment (P&T) system design for 
groundwater remediation. The parameters to be designed include the 
spatial coordinates of extraction wells and pumping rates for each well. 
The ultimate goal is to support effective environmental contamination 
management. We systematically assessed five state-of-the-art surrogate 
models – Kriging, Polynomial Interpolation (PolyInterp), Support Vector 
Regression (SVR), Random Forest (RF), and Deep Neural Network 
(DNN) - to determine their effectiveness in designing P&T schemes. The 
results demonstrate that the DNN model demonstrated statistically su
perior predictive accuracy. This reflects that the deep learning neuro 
network model is advantageous at learning nonlinear relationships in 
contaminant transport modeling.

While, our most striking finding is that no single model consistently 

outperforms others across all scenarios. Although DNN achieved the 
highest predictive accuracy, it only generated the best prediction results 
in 46 out of 200 cases. Conversely, some models show lower overall 
validation accuracy, they still produced optimal solutions in many cases 
(for example, Random Forest model has the lowest validation accuracy, 
but it generated 47 best predictions out of 200 validations). These 
findings demonstrate that we cannot identify a universally “best” sur
rogate model.

The above findings suggest that employing a multiple surrogate 
simulation-optimization framework could be beneficial. In this frame
work, each surrogate model (Kriging, PolyInterp, SVR, RF, and DNN) is 
independently trained and employed for optimization. Our experi
mental tests confirmed that this framework has contributed to better 
results: a P&T scheme that achieved higher contaminant remediation 
efficiency and lower final residual contaminant (17. 5% compared to 
19.2–21.7%). It is also interesting to note that, this P&T scheme sug
gested that we can remove one of the 5 pumping wells. It could signif
icantly reduce the implement cost for the P&T scheme while didn't harm 
the remediation results.

This study highlights that it is beneficial to move beyond conven
tional approach that relying on single “best-performing” surrogate 
model in simulation-optimization studies. While advanced models like 
DNN exhibited the highest predictive accuracy, their optimization per
formance does not necessarily arrive at the superior remediation solu
tion. Instead, we can use a multiple-surrogate framework to let the 
advantages of all different surrogate models be fully used. Using the 
multiple-surrogate framework has been proved at least in this work to be 
more effective in identifying effective and cost-efficient P&T schemes.
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Appendix A. Appendix

To assess the robustness of surrogate model performance against realization-specific biases and parameter variations, we generated 8 additional 
independent K fields. As shown in Fig. A1, the first 4 K fields are generated with the same parameters (correlation length 100 m; logK bounds − 6 to − 4 
m/s), but each has a distinct random pattern. The K fields 5–8 have various parameters: 5 and 6 use larger correlation lengths of 200 m; 7 and 8 use 
smaller correlation lengths of 80 m. While K field 5 and K field 7 kept the logK bounds of − 6 to − 4 m/s, while 6 and 8 are assigned with larger bounds 
of logK: − 6.5 to − 3.5 m/s

Fig. A1. The 8 new K fields.

For each K field, we used the same setup with the manuscript to build the surrogate models. Specifically, we first conducted 1200 numerical 
simulations of the pollutant extraction process, with randomly generated parameters (positions and pumping rates of the 5 wells) and the final residual 
contaminant mass is recorded. Second, the training dataset was formed by combining these random parameters and residual masses (1000 samples for 
training, 200 for validation). Third, all 5 surrogate models (Kriging, PolyInterp, SVR, RF, DNN) were built and trained for each field. Performances 
were evaluated on the validation set using RMSE (Root Mean Square Error) and the results are provided in Table A1.
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Table A1 
RMSE values of the supplement validation tests (The model with lowest error in each test is marked by underline).

K fields Kriging PolyInterp SVR RF DNN

1 0.1923 0.2018 0.1882 0.2333 0.1889
2 0.1677 0.1882 0.1662 0.2182 0.1612
3 0.1574 0.1760 0.1577 0.2167 0.1539
4 0.1789 0.1947 0.1717 0.2337 0.1676
5 0.1878 0.1964 0.1793 0.2321 0.1768
6 0.1977 0.2051 0.1961 0.2346 0.1943
7 0.2051 0.2170 0.1974 0.2425 0.1981
8 0.1757 0.1952 0.1690 0.2305 0.1715

Since lower RMSE indicates better predictive accuracy, we can find that the SVR and DNN models are most accurate in all of the tests. The Random 
Forest model (RF) is less accurate in this overall validation stage.

We also counted how many times each surrogate model gave the lowest RMSE in the 200 validation samples per field. The results are shown in 
Table A2. Model RF exhibited a higher frequency for giving superior performance: usually more than 47 out of 200. The quantities are different. 
However, no model recorded zero instances. Despite that model Kriging exhibited much less top-performing instances, it still yielded the most accurate 
predictions in 10 to 40 cases per test.

Table A2 
Top-performing instances of five surrogates in the supplement validation tests.

K fields Kriging PolyInterp SVR RF DNN

1 15 38 48 58 41
2 33 37 40 58 32
3 21 44 48 52 35
4 23 38 50 47 42
5 22 39 46 52 41
6 22 38 48 54 38
7 26 35 45 56 38
8 23 33 51 47 46

These results can support “no single model consistently outperforms others across all scenarios.”. Although we did not extend to more fields, we 
still estimate that specific counts would shift with various K fields, but the pattern should persist: no model is always the most accurate, and no model 
is always the least accurate. These results should be supportive to our conclusion that no single surrogate model consistently outperforms the others 
across all scenarios.
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