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Pump-and-treat (P&T) remediation is a widely adopted and effective method for groundwater contamination
control. It is important to optimize the operation schemes (pumping well locations and pumping rates) to
maximize contaminant removal efficiency and minimize operational costs. Recently, surrogate models have been
integrated with optimization algorithms to formulate the remediation schemes. However, with various surrogate
techniques available, their comparative performance in P&T remediation tasks and potential for combined usage
of multiple surrogates require further exploration. In this study, five popular surrogate models—Kriging, Poly-
nomial Interpolation, Support Vector Regression (SVR), Random Forest (RF), and Deep Neural Network (DNN)—
were evaluated for their ability to predict contaminant removal efficiency under diverse schemes in a multi-
contaminant site. The analysis revealed that, while DNN achieved the highest overall prediction accuracy in
the validation stage across the 200 cases, no single surrogate model consistently outperformed the others in all
individual cases. A multi-surrogate optimization framework, coupling all five models with a genetic algorithm,
was developed to enhance P&T schemes. The usage of multiple surrogates finally brings benefits because the
complementary strengths of diverse surrogate models are combined. We identified remediation schemes that
achieved superior contaminant removal (17.5% residual contaminant) compared to the other results
(19.2-21.7%). The framework offers a robust tool for environmental management and insights for advancing
studies related to surrogate-based optimization.

1. Introduction

Groundwater is a vital natural resource (Liang et al., 2025; Masocha
et al., 2020; Ning et al., 2024; Rabbani et al., 2025; Rao et al., 2022). On
one hand, it provides primary supply for drinking water, industrial
consumption and agricultural irrigation in many regions (Baskaran and
Abraham, 2022; He et al., 2024; Li et al., 2024). On the other hand, it
plays a key role in maintaining ecological balance by sustaining base-
flows and wetland habitats (Fan et al., 2022; He et al., 2019, 2021).
However, with expanding industrial activities and urban development,
groundwater systems are being increasingly contaminated by human
activities (Hamutoko et al., 2016; Uugwanga and Kgabi, 2021). The
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degraded water quality is posing significant risks to human health and
aquatic ecosystems.

Various remediation methods have been developed to address the
increasingly severe groundwater contamination phenomenon. These
methods are broadly categorized into in-situ and ex-situ approaches
(Truex et al., 2017; Truex et al., 2015). In-situ methods include
permeable reactive barrier, chemical reduction, bio-reduction, and
electrokinetic remediation techniques (Thornton et al., 2014; Wang
et al., 2025; Xu et al., 2024; Zhu et al., 2020), which treat contaminants
in place. In contrast, ex-situ methods involve the extraction of contam-
inated groundwater or soil for off-site treatment. As one of the ex-situ
methods, pump-and-treat (P&T) technique is especially effective and
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popular (Zhang et al., 2025).

The P&T technique has been deemed as one of the most critical,
invaluable (Carroll et al., 2024), and widely applied (Truex et al., 2017;
Truex and Johnson, 2017) method for groundwater contamination
remediation. Simply put, the P&T technique works by using a series of
extraction wells to pump contaminated groundwater to the surface for
treatment (Zhang et al., 2025). The P&T technique is valid for both
dissolved solute contaminants (Chang et al., 2007; Qiang et al., 2024;
Song et al., 2025) and non-aqueous phase liquid (NAPL) contaminants
(Bae et al., 2024; Ciampi et al., 2023). Besides, it has been proved valid
under complex geological conditions (Ciampi et al., 2023; Zha et al.,
2019). However, operational costs of pump-and-treat method is high
due to energy-intensive pumping and long-term maintenance. Addi-
tionally, the P&T remediation efficiency typically exhibits a progressive
decline in the later stages (Harvey et al., 1994). This is primarily because
contaminants could be trapped in low-permeability zones such as silt
and clay horizons or the matrix in fractured rocks. These trapped con-
taminants are released slowly through slow advection or back diffusion
processes. Thus, the P&T efficiency subsequently enters a prolonged
phase of persistently low extraction levels that may persist for years.
This pattern is reflected by the tailing effect of contaminant concentra-
tions in pumping wells (Carroll et al., 2024; Zha et al., 2019). As a result,
a considerable amount of residual contamination may persist and
require further treatment (Carroll et al., 2024; Zha et al., 2019).
Empirical evidence indicates that residual contaminants persist after
P&T treatment regardless of the aquifer conditions and implementation
setups (Pedretti et al., 2014). Currently the P&T method still cannot
achieve perfect remediation and fully restore aquifers to pre-
contamination conditions. Therefore, it is necessary to optimize the
P&T strategies to maximize contaminant removal efficiency (Kuo et al.,
1992; Thornton et al., 2014) and minimize total remediation costs
(Chang et al., 2007; Qiang et al., 2024).

Recently, P&T system design has been realized through simulation-
optimization (S-O) frameworks. Firstly, numerical models are devel-
oped to represent the contaminated site's geometry and hydrogeological
properties, and then applied to simulate the processes of groundwater
flow and contaminant transport to the extraction pumping wells for
removal. Secondly, the simulation model is integrated with optimization
methods, which iteratively adjust well locations and pumping rates until
it finds the optimal solution (either maximizing contaminant removal
efficiency or minimizing total remediation costs). Various optimization
algorithms have been employed to design the P&T systems. The early
work by (Kuo et al., 1992) demonstrated that the simulated annealing
(SA) algorithm is effective for P&T optimization. And they have speci-
fied that the simulated annealing algorithm is effective because it could
avoid local optima and explore the global optimal. Chang et al. (2007)
and Qiang et al. (2024) employed the genetic algorithm (GA) to opti-
mize P&T scheme. Wang and Zheng (1997) highlighted that genetic
algorithm as a global search method that is advantageous for designing
groundwater pump-and-treat remediation schemes. Zheng and Wang
(1999) further proposed an integrated optimization method that com-
bines the advantages of tabu search and linear programming; this
method achieved reduced computation cost and enhance remediation
efficiency. (Elshall et al., 2020) employed the covariance matrix adap-
tation evolution strategy (CMA-ES), which is a multi-objective frame-
work, to find the P&T scheme that achieves the treatment target with
minimum pumping rate.

Nevertheless, the simulation-optimization framework typically de-
mands numerous model evaluations for effective convergence. For the
P&T design task, the simulation model is for the transient transport
processes, which requires iterative computations at each time step (Hou
et al., 2016). This generates a heavy calculation load and considerable
time consumption, ultimately may create computationally prohibitive
tasks (Li et al., 2021). To overcome this challenge of high computation
cost, surrogate modeling has emerged as an essential technique (Qiang
et al., 2024; Song et al., 2025).

Journal of Contaminant Hydrology 277 (2026) 104876

Surrogate models are computationally cheaper models designed to
approximate the dominant features of a complex model (Asher et al.,
2015). Through various strategies, such as statistical methods or ma-
chine learning techniques, these models can learn the relationships be-
tween input parameters and output responses of the simulation model.
Subsequently, the surrogate model generates predictions using input
parameters, without performing the numerical simulations of the orig-
inal model. The major motivation of using a surrogate model is to reduce
the prohibitively high computation cost (Razavi et al., 2012). According
to (Asher et al., 2015; Robinson et al., 2008), the current surrogate
methods can be divided into three categories, including data-driven
methods, projection-based methods and multi-fidelity methods. Luo
et al. (2023) recommended using data-driven surrogate models for
groundwater decision support problems (including remediation design,
monitoring network design). Among them, machine learning methods
like support vector machine (Ouyang et al., 2017) and artificial neural
networks (Secci et al., 2022a; Zhou and Tartakovsky, 2021) have also
been widely used. Recent Deep Neural network (DNN) surrogates have
shown particular strength in high-dimensional groundwater problems
that traditional methods fail to handle due to the curse of dimensionality
(Mo et al., 2019). Notably, convolutional architectures excel at high-
dimensional inverse modeling (e.g., simultaneous source and conduc-
tivity identification), while long short-term memory (LSTM) models
perform exceptionally well in temporal contaminant forecasting (Li
et al., 2021). Further, novel generative adversarial networks have been
used to construct surrogates (Deng et al., 2025).

Recent advancements in multi-fidelity surrogate modeling integrate
data from varying fidelity levels to boost accuracy and efficiency in
computationally demanding scenarios. Giselle Fernandez-Godino et al.
(2019) provided decision criteria for multifidelity surrogates, empha-
sizing benefits in high-fidelity data scarcity, Lee et al. (2024) fused
coupled and decoupled models, achieved increased surrogate accuracy
under fixed budgets. Notably, (Lee et al., 2025) developed an adaptive
quality-based multi-fidelity (AQBMF) framework that ranks and com-
bines low-fidelity sources, surpassing traditional methods in bench-
marks by filtering low-quality data and optimizing ensembles. Similarly,
(Lee et al., 2026) utilized multi-fidelity techniques with similar low-
fidelity data from different conditions, achieving up to 60% efficiency
improvements and 15-20% gains in energy density.

Although surrogate models have been widely applied in hydrogeol-
ogy, their use in the specific area of P&T design is limited. Currently,
only a few studies have been identified that develop surrogate models
for P&T system design: a Kriging model (Qiang et al., 2024; Zhang et al.,
2022), neuro network models (Majumder and Eldho, 2020; Song et al.,
2025), and the analytic element method (Matott et al., 2006), as well as
several surrogates (Luo and Lu, 2014). The lack of systematic perfor-
mance comparisons obscures the applicability of various surrogate
methods to P&T design. On the other hand, current studies often rely on
a single surrogate model (Qiang et al., 2024; Song et al., 2025), while
(Forrester and Keane, 2009) emphasized that no surrogate method
universally outperforms others, as each has unique strengths. Consid-
ering this, (Matott et al., 2006; Xing et al., 2019) suggest employing
multiple surrogate models simultaneously. (Viana et al., 2009) proposed
a framework using multiple surrogate models to enhance prediction
accuracy.

This study aims to address the identified limitations related to sur-
rogate modeling for pump-and-treat scheme design. Firstly, to tackle the
scarcity of systematic comparisons, we assess the prediction accuracy of
five common surrogate techniques: Kriging, Polynomial Interpolation,
Support Vector Regression, Random Forest, and Deep Neural Network.
Secondly, we investigate the joint use of these surrogate models: each
trained model is integrated with optimization algorithms to search for
the P&T scheme with the lowest residual contamination. The removal
efficiencies of all surrogate models are compared to identify the most
effective approach. This research represents an innovative exploration
in pump-and-treat technique through novel testing of a multi-surrogate
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framework. This approach delivers practical benefits directly for
enhancing remediation efficiency and reducing environmental impact.
The novel framework and findings may offer valuable insights for
simulation-optimization applications in fields like aquifer character-
ization and contaminant source identification.

2. Methods

This study employs a simulation-optimization framework to opti-
mally design the pump-and-treat (P&T) schemes. As illustrated in Fig. 1,
the P&T scheme optimization process involves three steps.

First, a numerical simulation model is developed to simulate the
groundwater flow and contaminant transport processes during the
pump-and-treat operation. The operation scheme parameters, including
well locations and pumping rates are randomly generated and incor-
porated into the simulation model to simulate the different contaminant
removal processes. For each simulation, the final residual contaminant
mass (normalized) in the synthetic aquifer is collected. These data are
then compiled and integrated to form a training dataset.

Second, surrogate models are constructed and trained using the
above training dataset, where the P&T configuration (well locations and
pumping rates) are input and the residual contaminant is the output.
This process enables the models to capture patterns from the data and
replace the computationally intensive numerical simulation model. Five
distinct surrogate models—Kriging, Polynomial Interpolation (Poly-
Interp), Support Vector Regression (SVR), Random Forest (RF), and
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Deep Neural Networks (DNN)—are tested to evaluate their accuracy.
These models are selected because they have been used and proven to be
effective in previous hydrogeological applications, also because these
methods have various functioning mechanisms.

Third, an optimization algorithm is implemented, to determine the
operation scheme with minimized the total contaminant mass in the
synthetic aquifer. In this work, the genetic algorithm is employed as the
optimization method. Because it is found to be able to effectively handle
the complex, nonlinear nature of P&T design, to explore a wide range of
well locations and pumping rates, as demonstrated in previous studies
(Chang et al., 2007; Rudiyanto et al., 2023).

At last, the optimization results from different surrogate models are
compared to establish a robust multi-surrogate simulation-optimization
framework. The derived optimal well locations and pumping rates are
subsequently validated through numerical simulation to assess their
actual performance.

2.1. Numerical simulation model

2.1.1. Governing equations

The groundwater system was numerically modeled using a two-
dimensional porous medium formulation. The governing equations for
fluid flow and contaminant transport are implemented through the
following coupled processes. The steady-state flow field was determined
by combining Darcy's law with the continuity equation:

u= —TVh M

Simulation model

* Random generation of well locations & pumping rates;
* Groundwater flow & contaminant transport simulation;
* Residual contaminant mass record.

V-

* Output: residual contaminant.

Multiple surrogate models

* Trained to replace numerical simulations;
* Input: well locations & pumping rates;

v '------

* Genetic algorithm (GA) ;

Optimization algorithm

* Handles nonlinear P&T design complexity;
* Minimizes total contaminant mass.

A 4

End

Optimal PT scheme with lowest

residual contaminant.

Fig. 1. The pump-and-treat scheme optimization using the multiple-surrogate simulation-optimization framework.
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0

= (pe) + V-(pw) = Q. @
where h is the hydraulic head (L), Qs is the mass source term (M/TLB), T
is hydraulic conductivity (L/T), u is the flow velocity vector (L/T), ¢ is
porosity (/), p is fluid density (M/L®). The derived velocity field was
subsequently applied in the advection-dispersion equation:

%(EC) +u-V(6C) = V-(¢(D. + ua)VC) +R 3
where C is concentration (M/L), D, is the diffusion coefficient (L2/T), R
is the source term (M/TL3), a is the dispersivity term (L). The partial
differential equation system is discretized and solved numerically using
COMSOL Multiphysics® simulation softwares (Multiphysics, 1998),
employing the finite element method with appropriate boundary con-
ditions and convergence criteria.

2.1.2. Setups

Section 2.1.2 Setups describes the configuration of the synthetic
aquifer and the P&T system design. The aquifer properties, emission
details, and P&T operation parameters are comprehensively summa-
rized in Table 1. The two-dimentional synthetic aquifer is modeled as a
6 km x 6 km region (Fig. 2a) and a 2 km x 2 km site (Fig. 2b). We set up
a relatively small site because when applied to larger regions, pump-
and-treat (P&T) may face limitations in terms of operational costs and
remediation efficiency. A 6 km x 6 km buffer region surrounds the site
to simulate external conditions; the geometric center is at (0,0) in a
Cartesian coordinate system. The aquifer has a thickness of 30 m,
Porosity (¢) is 0.25, and fluid density (p) is 1000 kg/mg.

As shown in Fig. 2, the hydraulic conductivity (K) field is assumed to
be log-normally distributed, ranging from 107 to 10~ m/s. The het-
erogeneous conductivity field was generated using the geostatistical
toolbox of the “GSTools Python library” developed by (Miiller et al.,
2022). A Gaussian variogram model was applied with a variance of 1 as
the original conductivity field (logKp). The spatial correlation length is
assigned to be 100 m. In the GSTools algorithm, the correlation length of
100 m represents moderate spatial variability: for distances <100 m,
adjacent grid points exhibit stronger similarity in K values. Thus we can
foster some stagnant zones that trap contaminants and slowly release. To
adjust the values into specific bounds of (logKpyin = —6 and logKmax =
—4 m/s), the field 1ogKo then undergoes a global min-max scaling using
the formula:

_ logK, — min(logKj)
scaled ™ max(logKo) — min(logKy)

logK X (logKmax - lOgKmin) + 10gKmin

C)

In this scaling operation, every value is transformed proportionally
without truncation and without altering relative spatial patterns. This

Table 1
Hydrogeological and Operational Parameters for P&T Scheme Optimization.

Parameter Value/Description

Aquifer Dimensions 2 km x 2 km (4 km?) site, 6 km x 6 km buffer

Aquifer Thickness 30 m

Porosity (¢) 0.25

Fluid Density (p) 1000 kg/m?®

Hydraulic Conductivity Log-normally distributed (Spatial correlation 100 m),
) 10 °to 10 *m/s

Boundary Conditions Left: h = 90 m; Right: h = 60 m; Top/Bottom: No-flow

5 factories emitting, three contaminant categories C1, C2,

C3

10 years

5 wells, locations adjustable within site

15 (2 coordinates +1 flow proportion per well)

Contaminant Sources

Release Duration

P&T Wells

Adjustable Parameters
P&T Operation

. 10
Duration years
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allows convenient control over the maximum and minimum values.

To ensure the hydrogeological parameters for the synthetic aquifer
are well-justified, we selected realistic values reflecting practical con-
ditions. The aquifer dimensions, thickness, porosity, and fluid density
represent typical characteristics of contaminated sandy aquifers. The
hydraulic conductivity range and spatial correlation setups align with
common field-scale log-normal distributions. The hydraulic gradient,
calculated as (90 m - 60 m) / 6000 m = 0.005 (0.5%), mirrors gentle
slopes found in natural aquifer systems.

Because the positions and pumping rates of each well remain con-
stant throughout the entire extraction process in our design, we made a
simplification assumption and implemented steady-state flow simula-
tion. While it does not capture early transient drawdown or flow di-
rection changes, we focus more on the overall extraction process.
Steady-state flow is driven by constant-head boundary conditions: a
higher hydraulic head (h = 90 m) is arranged at the left boundary (x =
—3000 m) and a lower hydraulic head (h = 60) m is at the right
boundary (x = 3000 km). Thus, a left-to-right hydraulic gradient is
established. No-flow conditions are applied at the top and bottom (y =
3000, —3000 m) boundaries. The initial head field was set with a linear
interpolation between 90 m at the left boundary and 60 m at the right
boundary, ensuring a smooth transition across the domain. The steady-
state groundwater flow dynamics are simulated in the synthetic aquifer
system under prescribed boundary conditions.

The synthetic aquifer is assumed to be contaminated by five fac-
tories. As shown in Fig. 3, three contaminants (C1, C2, C3) are intro-
duced by these factories: the first two factories emitting C1, the third and
fourth emitting C2, and the last one emitting C3. All of the setups about
the factories are randomly generated, including locations, emission
rates, concentrations. The release durations are assumed to be 10 years
for these factories.

The concentration fields in Fig. 3 will be used as the initial condition
of our P&T system. Note that the emission concentrations for these
factories are 77, 50, 17, 30 and 120 mol/m?, respectively. The first two
factories represent average conditions, whereas the third and fourth
exhibit lower concentrations but cover larger areas. In contrast, the fifth
factory shows higher concentrations within a smaller area. The con-
taminants with varied concentrations and spatial distributions should
compose a complex contamination scenario. This complexity poses
challenges for P&T design. However, addressing this complexity should
enhance the significance and practical utility of this paper.

In this site, we have set up five pumping wells to extract the above
contaminants. The locations of five wells can be anywhere within this
site. Constrained by operational cost, the total flow rate of five pumping
wells is fixed at 8000 m®/day. The flow rates are distributed among the
five wells in varying proportions. This results in 15 adjustable parame-
ters: for each well, two coordinates (x, y) define its location, and one
proportion determines its flow rate, where the actual flow rate is
calculated by multiplying the proportion by 8000 m3/day. These two
kinds of parameters are also the key adjustable parameters for
enhancing remediation efficiency in previous studies (Huang and
Mayer, 1997; Song et al., 2025).

The P&T operation are simulated for a duration of 10 years and the
contaminant removal result can be evaluated. The well locations and the
flow rate proportions for the five wells will be adjusted collectively to
optimize removal efficiency.

2.1.3. Performance metrics

In this work, the total residual ratio (Rresiqual) is adopted as the
contaminant removal performance metric for various pump-and-treat
(P&T) schemes. The metric is defined as:

3

R _ MCi.residual _
residual — § -
< Mg, initial Mc, initial

MC residual MC residual MC residual
1 5 2! + 3 ! (5)

Mc, initiat M, initial

where Mc; residual Tepresents the residual mass of contaminant C; after
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(b) The contaminated site.
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Fig. 2. Spatial distribution of hydraulic conductivity (K) field.

remediation; Mc; initiai denotes the initial mass of contaminant C;. The
main reason for choosing this metric is that there are three contaminants
(C1, C2, C3) from five factories, each contaminant varies in concentra-
tion and may exhibit severe toxicity. This metric emphasizes the pro-
portional reduction of each contaminant; thus, the low-concentration
contaminants are not overlooked.

The alternative metric, total residual contaminant mass (Migtal =
Mc + Mca + Mc3), is not used. Because, when optimization relies on the
total mass of three contaminants, the remediation would prioritize
contaminants of larger quantity and may neglect the contaminants with
lower masses.

2.2. Surrogate models

This subsection introduces five surrogate models aimed for pump-
and-treat (P&T) optimization: Kriging, Polynomial Interpolation, Sup-
port Vector Regression (SVR), Random Forest (RF), and Deep Neural
Network (DNN). The five surrogate models were selected from three
distinct methodological families: (1) geostatistical interpolation (Krig-
ing), (2) deterministic algebraic interpolation (Polynomial), and (3)
machine learning approaches (SVR, RF, DNN). The mechanism and
strengths of these models are outlined here in the following subsections.
Note that Kriging, Polynomial, SVR, and RF models have been imple-
mented on MATLAB R2022b, DNN has been implemented on Python 3.9
with PyTorch Deep Learning toolbox.

These models are trained and validated using the dataset generated
by the numerical model, with input features comprising the 15 adjust-
able parameters: x and y coordinates and flow rate proportions for each
of the five pumping wells. The output is the total residual ratio (Rresidual,
Eq. 4), which reflects the overall remediation efficiency. After training,
the surrogate models can provide highly efficient predictions of reme-
diation efficiency (Ryesiqual) based on these inputs with specified values.
So the surrogates can replace the numerical model for rapid P&T
optimization.

2.2.1. Kriging
Kriging has been widely adopted in geostatistical interpolation and

has recently gained prominence as an effective surrogate modeling
technique for groundwater systems. The Kriging interpolation process is
shown in Fig. 4, where values at unmeasured locations (estimated
values) are predicted based on measured data points (measured values).

When it comes to mathematical formulation, Kriging is mainly
composed of a polynomial trend and a random process. The polynomial
trend (low-order linear or quadratic polynomial) is employed to capture
the global mean response of the system; the random process accounts for

local variations by quantifying spatial correlations that decrease with
distance with covariance functions. Together, they enable Kriging to
provide more accurate interpolation predictions. Kriging can be effec-
tive for approximating complex, spatially correlated systems with sparse
data. The Kriging method assumes a constant mean and variance across
the domain. This may oversimplify complex aquifer heterogeneities and
lead to smoother predictions that underestimate the extreme or irregular
distribution of parameters. More detailed explanations of the kriging can
be referred to (Zhang et al., 2022).

In this study, Kriging surrogate models were implemented using
Gaussian Process Regression (GPR) in MATLAB. The hyperparameters
included a squared exponential kernel function to capture spatial cor-
relations (akin to ordinary Kriging), feature standardization set to true
for normalization. Training was performed on 1000 samples, with
validation on 200 samples to evaluate performance metrics such as
RMSE and R2.

2.2.2. Polynomial interpolation

Polynomial Interpolation surrogate offers a mathematically
straightforward approach to approximate numerical model responses.
This deterministic method constructs a single algebraic polynomial that
passes through all training data points. While lower-order polynomials
(n < 3) are typically employed for practical applications to avoid Run-
ge's phenomenon (Burden and Faires, 2011).

In this work, we assigned that the polynomial function in the sur-
rogate model takes the form:

F(X) = o+ ELy B + L, Bt + 21 I Bixix; (6)

where x = (x1, X2, .... Xy) represents the 15-dimensional input vector (e.
g., well locations, pumping rates), and o, f;, Bii, fij, are coefficients for
the constant, linear, squared, and interaction terms, respectively. These
coefficients are determined by fitting a linear regression model to the
training data, the least-squares error would be minimized to ensure
accurate approximation of the numerical model outputs. Polynomial
Interpolation assumes the system response can be approximated by a
smooth, continuous polynomial function. Thus, it may make less accu-
rate predictions for highly nonlinear or discontinuous relationships in
complex groundwater systems.

In this study, polynomial regression surrogate models were imple-
mented in MATLAB. The model incorporated second-order polynomial
features, consisting of linear terms for each of the 15 inputs, squared
terms for each input, and pairwise interaction terms between inputs. We
employed the Iteratively Reweighted Least Squares (IRLS) with the
default ‘bisquare’ weight function and a tuning constant of 4.685, so that
observations with large residuals are downweighted iteratively until
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(b) Factory 2 leakage.
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Fig. 3. The initial contaminant plume distribution caused by five factories (The pink points represents factory locations). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

convergence.

2.2.3. Support vector regression

Support Vector Machine (SVM) is a powerful supervised learning
algorithm developed by (Cortes and Vapnik, 1995) based on statistical
learning theory and structural risk minimization. This method is origi-
nally designed for binary classification. As shown in Fig. 5, it works by

identifying a decision boundary (hyperplane) that maximizes the margin
between classes. Fig. 5 exhibits a classification question where the
bondary is linear. For nonlinear problems, kernel functions (e.g.,
Gaussian or polynomial) would be used to implicitly transform data into
a higher-dimensional space; then complex nonlinear relationships
would be transformed into linearly separable problems. This elegant
mathematical framework guarantees a global optimum through convex
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Fig. 4. Schematic of Kriging interpolation.

Support Vectors Hyperplane

Fig. 5. Schematic of Support Vector Machine.

optimization (Boyd, 2004; Boyd et al., 2011). Thus, the SVM method has
been recognized as both theoretically sound and computationally effi-
cient (Bennett and Parrado-Hernandez, 2006; Vapnik, 2000).

Support Vector Regression (SVR) is the extension of SVM's principles
to regression tasks. Instead of maximizing class separation, SVR fits a
hyperplane within a tolerance margin (e-insensitive tube), penalizing
only deviations larger than e (as shown in Fig. 6). SVR is able to handle
high-dimensional data and sparse samples. It has been recorded to be
effective for predicting contaminant concentrations in groundwater
systems (Ouyang et al., 2017). SVR assumes that complex relationships
can be captured by mapping data into a higher-dimensional space via
kernel functions. Thus it exhibits flexibility in modeling more nonlinear
patterns. This flexibility is expected to better handle irregular or non-
smooth parameter distributions, compared to Kriging's assumptions.

In this study, Support Vector Regression model employed a Gaussian
(RBF) kernel function to handle nonlinear relationships. Following a
trial-and-error test, the optimal parameters were determined as follows:
Chox = 10.00 (the box constraint, a regularization parameter that bal-
ances low training error with model complexity by constraining the
Lagrange multipliers), Epsilon = 0.01 (the epsilon-insensitive margin

Hyperplane
1

Support Vectors
/ ™

23 Maximum Margin

Fig. 6. Schematic of Support Vector Regression.
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width, which establishes a tolerance band around predictions where
deviations are not penalized; lower values heighten sensitivity to er-
rors), and KernelScale = 1.00 (the scaling factor governs the kernel's
sensitivity to input variations).

2.2.4. Random Forest

Random Forest (RF) is an ensemble machine learning method that
constructs multiple decision trees during training and outputs their
averaged predictions (Breiman, 2001). As shown in Fig. 7, each decision
tree functions as a hierarchical predictor that recursively partitions the
feature space through optimized binary splits, where the splitting
criteria maximize information gain for classification tasks or minimize
prediction error for regression. Predictions are generated by propagating
input features through each tree's split rules until reaching terminal
nodes containing the final output values. RF assumes that the averaging
predictions from multiple decision trees can effectively capture complex
and heterogeneous patterns. This adaptability may improve predictive
accuracy for non-linear problems.

The model's robustness stems from two fundamental randomization
techniques: bootstrap aggregating, where individual trees train on
randomly sampled subsets of the original data, and feature subspace
selection, where each split considers only a fraction of available fea-
tures. Key hyperparameters requiring optimization include the number
of constituent trees, maximum allowable tree depth, and minimum
samples required for node splitting, typically tuned through cross-
validation procedures. This ensemble approach enables RF to effec-
tively model complex, high-dimensional relationships characteristic of
groundwater systems (Z. Wang et al., 2024). In this study, each Random
Forest surrogate model consisted of 1500 decision trees. They were
configured for regression mode and all available predictors were used at
each split for feature selection. This implemented bootstrap aggregating
without random subspace sampling. A minimum leaf size of 5 is
implemented.

2.2.5. Deep neural network

Artificial Neural Networks (ANNSs) represent a foundational machine
learning approach inspired by biological neurons. Artificial Neural
Networks (ANNs) are biologically inspired computational systems that
process information through interconnected layers of neurons, as shown
in Fig. 8. In each neuro, there would be weighted summation of inputs,
bias addition, and nonlinear transformation via activation functions.

The DNNs assume that complex relationships can be learned through
layered transformations by the neurons and the nonlinear activation
functions. The network's predictive output is refined through back-
propagation, where prediction errors are propagated backward to adjust
weights and biases via gradient descent, progressively minimizing the

J@& ﬁ?g‘ fg

‘ Decision Tree 1 ‘ ‘ Decision Tree 2 ‘ ‘ Decision Tree N ‘
'
Result 1 Result 2 Result 3
Majority Voting/
Averaging
!

Final result

Fig. 7. Schematic of Random Forest.
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Fig. 8. Schematic of artificial neural network (modified after (Wang et al.,
2024a, 2024b)).

discrepancy between simulated and predicted contaminant distribu-
tions. While shallow networks suffice for linear relationships, deeper
architectures (more than 3 hidden layers) demonstrate superior per-
formance by capturing complex nonlinear interactions (Zhou et al.,
2021).

In this study, Deep Neural Network surrogate models were imple-
mented in PyTorch. It included eight hidden layers with neuron counts
of 4800, 2400, 2400, 1200, 1200, 600, 600, and 120, respectively. Leaky
ReLU activation functions were used with a negative slope of 0.01 for
nonlinearity. Training employed the Adam optimizer with a fixed
learning rate of 0.00005. Mean squared error served as the loss function.
The model with the lowest validation loss was saved.

2.2.6. Comparative analysis of surrogate models

The above surrogate methods have different working mechanisms,
thus different suitable application scenarios. In the comparative study
by (Villa-Vialaneix et al., 2012, the task is approximating N»O fluxes and
N leaching), Kriging is more accurate than other models for small
datasets; and for large datasets, random Forest is more accurate than
SVR and Kriging; but SVR handles noisy data well. In the review work by
(Razavi et al., 2012), they noted that Kriging is more effective for low-
dimensional problems; Polynomials can be used as global surrogates
(fitting the entire input space) or in local optimization contexts; neuro
network is highly effective for non-linear, complex response surfaces, it
is the most used surrogate in the reviewed studies. According to the
input dimension (D) and training data sample size (n), (Forrester and
Keane, 2009) provided suggestions on the application of the different
surrogates.

As noted by (Asher et al., 2015), such comparison literatures are
numerous. We cannot list all their results. So, we provide Table 2 to
summarize the studies that used these models (at least two papers),
application areas, and suggested application conditions. Note that the

Table 2
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suggestions are preliminary, and it still requires actual testing to
determine the best model for a specific application scenario. Readers
interested in further details can refer to the cited studies.

However, Forrester and Keane (2009) emphasized that no surrogate
method universally outperforms others, results will depend on the
application scenario, and factors such as the input dimension and the
size of training set (Breiman, 2001). So Viana et al. (2009) suggested
using multiple surrogates in a single framework. Matott and Rabideau
(2008) have proved that using multiple surrogates improved the opti-
mized objective function and reduced runtime.

For our problem of P&T system optimization, the input dimension is
15 (D = 15), the training dataset has 1000 samples (n = 1000), and the
problem complexity/nonlinearity is somehow uncertain. Thus, all five
models is potential to make effective predictions.

2.3. Genetic algorithm for optimization

In this study, a Genetic Algorithm (GA) was employed to optimize
pump-and-treat schemes for groundwater remediation, targeting the
minimization of residual pollutant mass across three distinct contami-
nants. GA is an evolutionary optimization technique inspired by natural
selection processes. It could effectively address complex, non-linear
problems in hydrogeology by navigating high-dimensional parameter
spaces (Maier et al., 2014; Zheng et al., 1999) and escaping local optima
(Singh and Datta, 2006).

Unlike gradient-based methods which rely on local gradient infor-
mation and may converge to local optima in non-convex problems, GA's
evolutionary approach could effectively handle the nonlinearity and
multimodality of P&T optimization problem. Although GA requires
more iterations of the forward model, the use of low-cost surrogate
models significantly reduces computational expense. Gradient-based
methods may struggle with the discontinuous relationships in our P&T
problem. So the GA method is more suitable for this study.

In our implementation, the population of each generation comprises
1000 candidate solutions. Each candidate solution is a 15-dimensional
vector of the parameters including well locations and pumping rates.
The objective function to be minimized is the normalized residual
contaminant (Ryesiqual)- Our implementation of the GA follows the
following procedures:

(1) Initialization: The initial population is established by randomly
generating 1000 individuals. Each individual represents a po-
tential P&T operation scheme defined by the 15 parameters.

(2) Selection: The surrogate models calculate the total residual ratio
(Rresidual) to evaluate contaminant removal efficiency for all P&T
schemes in the current population. Selection probabilities are

Comparison of surrogate models and application suggestions. (D represents input dimension, n represent training data size).

Model Successful Applications Application areas. Suggested application
conditions
Nitrate Leaching Process Modeling, groundwater D < 20, n < 500.
Kriging (Garcet et al., 2006; Qiang et al., 2024; Zhang et al., 2022) remediation, contaminant source identification, pump-and- Applicable to complex
treat optimization etc. non-linear problems;
. D (20,n) 500.
Polynomial . . . e . . .
. (Singh and Verma, 2019; Zaghiyan et al., 2021) Groundwater level, water quality. For simple problem with
Interpolation -
smooth variations.
D > 20, n > 500.
Support Vector Robust for nonlinear,

Ly et al.,, 2013; Y t al., 2011
Regression (SVR) (Ly et al., ; Yoon et al., )

Random Forest (RF) (Pham et al., 2020; Schoppa et al., 2020)

(Chen et al., 2020; Dawson and Wilby, 1999; Deng et al., 2024;

Secci et al., 2022b; Somogyvari et al., 2017; Yoon et al., 2007;
Zhi et al., 2024)

Deep Neural
Network (DNN)

Groundwater level prediction, Rainfall data analysis high-D input. Noised

data.

n > 500.
Applicable to complex
non-linear problems
Most widely adopted;
For various scenarios with
large datasets

Stream and flood discharge forecast.

Heat transfer in fractured media, contaminant transport.
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then computed using a fitness-proportional formula; individuals
with lower Ryesidual Values (indicating better remediation perfor-
mance) have higher probabilities of being selected. Also note that
the individuals with lower Ryesiqual Values may be selected mul-
tiple times during sampling. This implements the survival-of-the-
fittest principle.
(3) Reproduction: Using the selected individuals from the previous
step, the new generation is created through four distinct yet
complementary mechanisms: (i) Elitism preservation: 250
selected individuals are directly transferred to the next genera-
tion without modification; (ii) Mutation: 250 new individuals are
generated by applying controlled Gaussian perturbations (¢ =
0.1) to randomly selected parent solutions; (iii) Crossover: 250
offspring are produced through uniform crossover of parameter
sets from parent pairs; (iv) Diversity injection: 250 completely
new solutions are randomly generated within the defined
parameter bounds to maintain population diversity. Together,
these four steps produce a new generation comprising 1000
individuals.
Evaluation: The Riesigual Scores of the new population are calcu-
lated using surrogate models, with the lowest score recorded as
an indicator of the GA's convergence progress.
Iteration: Steps 2-4 are repeated until a convergence is achieved.
The P&T strategy is optimized for minimizing the total residual
ratio (Rresidual) across the three contaminants.

(4

—

5

—

The GA algorithm is run independently for each surrogate model
(Kriging, PolyInterp, SVR, RF, DNN) to generate the optimized P&T
parameters. To remove the effect of random initial population on opti-
mization results, we performed 20 independent optimization runs (each
with a different random initialization) for each surrogate. The resulting
P&T parameters were evaluated in the high-fidelity simulation model,
and the best-performing scheme (lowest true residual contaminant
mass) from these runs was selected as the representative result for that
surrogate. Finally, the overall best P&T scheme was identified by
comparing the selected schemes across all surrogates.

3. Results
3.1. Numerical simulation model

We conducted 1200 simulations, generating a dataset with 1000
samples for training and 200 samples for validating the prediction ac-
curacy of these surrogate models. These datasets were created using the
synthetic simulation model (Section 2.1), with inputs consisting of 15
randomly generated adjustable parameters: the x, y coordinates and
pumping rates for five wells. Outputs are the total residual contaminant
percentage values of three contaminants, ranging from 20% to 200%
(Fig. 9). A significant number of values distributed around 60-80%. The
range is wide, thus random P&T configurations may yield poor perfor-
mance. Note that from the training-validation dataset, the minimum
residual percentage of the three contaminants is 20.278%. It will be
interesting to check whether our optimization method could find a
configuration with residuals lower than 20.278%.

One example of the simulated contaminant transport process by the
numerical simulation model is shown in Fig. 10. The simulation tracks
the migration of three contaminants—C1, C2, and C3—over a 10-year
period. As pumping wells extract groundwater, the plumes are drawn
toward the wells.

The shape of the contaminant plume changes over time. At the
beginning (Fig. 10a, e, i), they are distributed in round shapes due to
injection. As pumping starts (Fig. 10b, f, j), the plumes are stretched by
the pumping wells. The contaminant plumes begin to move toward the
pumping wells, while the change is minimal. By the 5th year (Fig. 10c, g,
k), significant pollutant mass has been extracted into the wells. At the
final frame at 10th years (Fig. 10d, h, 1), the contaminant plume
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Fig. 9. Histogram of total residual contaminant percentages (Rresidqual) for
various P&T configurations.

develops into a band-like pattern, distributed near the pumping wells.
Contaminants C; and Cy exhibited higher residual levels near the
pumping wells, while C3 exhibits comparatively less residual. Indicating
more effective remediation. Have a basic knowledge about these plume
evolutions may also help contaminant remediation efforts.

It is rather challenging to determine the optimal pump-and-treat
(P&T) scheme via reasoning. On one hand, it is possible that using
dispersed well locations may be advantageous, as they can cover a
broader area of the plume. On the other hand, it is also possible that
using concentrated well placement can be advantageous, as it could
enhance extraction efficiency in high-concentration zones. To overcome
this confusion, we need the simulation-optimization techniques to
determine the most effective P&T strategy.

3.2. Surrogate model

3.2.1. Overall validation

As mentioned in Section 3.1, 1000 datasets are used to train the
surrogate models (including Kriging, Polynomial Interpolation, Support
Vector Regression, Random Forest, and Deep Neural Network). The
performance of these five models was evaluated using 200 validation
datasets. This evaluation has been realized via two key metrics: Root
Mean Square Error (RMSE) and correlation coefficient (Corre). The
validation results are shown in Fig. 11 and Table 3. RMSE measures the
average error by comparing the predictions by the surrogate models and
the numerical simulation outputs. A lower RMSE indicates more precise
predictions. The correlation coefficient assesses the linear relationship
between predictions and numerical simulation outputs. A high Corre
ensures accurate representation of complex plume dynamics. Using both
metrics together ensures models are precise (low RMSE) and capture key
patterns (high Corre).

As shown in Table 3, among the various evaluated surrogate models,
Deep Neural Network (DNN) performed the best, with the lowest RMSE
value of 0.1503 and the highest correlation coefficient of 0.8761. The
predictions are more approximate to the actual data, as shown in
Fig. 11e. Kriging and Support Vector Regression showed comparable
performance: the RMSE values (0.1604 and 0.1623) and Corre values
(0.8597 and 0.8604) are not far from DNN.

Polynomial Interpolation is less accurate, with an RMSE of 0.1794
and Corre of 0.8220. The Random Forest model is the least effective,
with the highest RMSE of 0.2125 and the lowest Corre of 0.7342. As
shown in Fig. 114, it is clear that the predictions show more substantial
deviations from the ‘y = x’ line.

3.2.2. Scenario-specific performance analysis
Recognizing that “no surrogate modeling method universally
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Fig. 10. Contaminant Transport process during the P&T process.

outperforms others, as each possesses unique strengths and weaknesses”
(Forrester and Keane, 2009), we checked on all of the single instances of
the validation set to reveal the scenario-dependent performance varia-
tions. Specifically, we recorded the frequency at which each model
achieved top performance (lowest prediction error) for each individual
validation instances. The results are shown in Fig. 12 and Table 4.

The results demonstrate three model, SVR, RF and DNN, demon-
strated comparable effectiveness in achieving optimal predictions: 47,
47 and 46 good instances respectively. Polynomial Interpolation showed
moderate performance, it has been the best for 34 validation cases.
Kriging is the least frequent top-performer for only 26 instances.

Interestingly, despite DNN exhibited overall best validation perfor-
mance in subsection 3.2.1, it performed best in only 46 instances. This
means it is definitely not universally optimal. Notably, Kriging showed
comparatively good accuracy in the overall validation, but it only per-
formed best for just 26 instances; the Random Forest model, showed
comparatively poor accuracy (Table 3), but it performed best for 47
instances, which is actually high. These findings reflect that each model
possesses unique scenario-dependent strengths. This aligns with
(Forrester and Keane, 2009).The results suggest that we should jointly
use the multiple surrogate models, rather than relying on a single ‘best’
model” within the subsequent inversion framework.

It is possible that the residual contaminant mass exhibit highly non-
linear characteristics with the variation of the P&T configuration
parameter space (15 adjustable parameters: well locations and pumping
rates). For the three models (SVR, RF, and DNN) that excel in scenarios
with complex, nonlinear relationships, so they have more top-
performing instances (47, 47, 46). Polylnterp, assuming a smooth
polynomial function, performs well in simpler, less nonlinear configu-
rations, resulting in fewer top instances (34). Kriging's homogeneity
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assumption limits its ability to model complex, nonlinear P&T out-
comes, explaining its lowest top instances (26).

It is possible that the residual contaminant mass exhibits highly
nonlinear characteristics with variations in the P&T configuration
parameter space (15 adjustable parameters: well locations and pumping
rates. The three models SVR, RF, and DNN are better at treating complex
and nonlinear scenarios because the assumption of these models. Thus
they provided more top-performing instances (47, 47, 46). The Poly-
Interp model assumes a smooth polynomial function, thus it provided
fewer top instances (34). Kriging's homogeneity assumption limits its
ability to model complex, nonlinear P&T outcomes, explaining its lowest
top instances (26).

3.3. Optimization results

Table 3 presents the inversion results of groundwater remediation
schemes obtained from five surrogate models, including optimized well
coordinates (X, Y) and corresponding pumping rates. The remediation
effectiveness, total residual contaminant values Ryesiqual, from five
optimization processes are also provided. The spatial distribution of
these well locations is visually represented in Fig. 13, where each dot
indicates a well position, and the size of the dot corresponds to the
pumping rate, with larger dots signifying higher pumping rates.

Via the total residual contaminant (Ryesiqual) Value, we check the
cleanup effectiveness of each optimized scheme. Using Kriging, we ob-
tained the highest total residual of 21.69%, which is least effective
among the five. PolyInterp achieves the lowest total residual of 17.48%,
which is the most successful pollution cleanup strategy. For the last
three models, SVR, Random Forest and DNN, the performances are
moderate, Ryesidual = 19.31%, 19.41% and 19.24% respectively. Despite
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Fig. 11. The scatter plots of the validation results of five surrogates.
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Table 3
The validation results of five surrogates.
Models RMSE Corre
Kriging 0.1604 0.8597
PolyInterp 0.1794 0.8220
SVR 0.1623 0.8604
RF 0.2125 0.7342
DNN 0.1503 0.8761

all schemes exhibits optimized results, PolyInterp provides the best

pollution cleanup outcome, with the lowest residual.

The scheme offered by the PolyInterp model (Fig. 13b) is kind of
special, it suggested the pumping flow rate of well 3 should be reduced
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to a near-negligible value (80 m3/day). This value is merely 1% of total
pumping rate. This result implies that it may be unnecessary to imple-
ment this well 3. If we can reduce the quantity of pumping wells, the cost
for drilling and installing pumping equipment would be saved by 20%.
The other surrogate model didn't offer such suggestions. Remarkably,
this simplified configuration maintains superior remediation perfor-
mance: the residual amount (Ryesiqual) of 17.48% is lower than the best
results from alternative models (Ryesidual ange: 19.2-21.7%). It is well
recognized that P&T systems requires high operational costs due to long-
term pumping and well maintenance. From an operational cost
perspective, eliminating one pumping well significantly reduces
ongoing expenses. Thus, it would be more cost-effective and practical for
real-world P&T system implementation.
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Fig. 12. Top-performing instances of five surrogates.

Table 4
Top-performing instances of five surrogates.

Models Top-performing instances
Kriging 26
PolyInterp 34
SVR 47
RF 47
DNN 46

3.4. Additional validation of out-of-distribution performance

To further substantiate the benefits of the multi-surrogate ensemble
in P&T optimization, we performed 200 additional independent genetic
algorithm optimization runs for both the proposed multi-surrogate
approach and a single-surrogate. For the baseline surrogate model, we
employed the DNN model, who has the highest overall accuracy. All
optimized P&T schemes are then evaluated on the numerical simulation
model. The distributions of verified residual contaminant mass are
presented in Fig. 14 as histograms. According to the Figure, the
ensemble-surrogate inversion approach exhibits a tighter and more left-
shifted distribution, which may suggest stronger robustness.

Recall that the training dataset for the surrogates exhibited a mini-
mum residual contaminant mass of 20.278%. We adopt this minimum
residual contaminant mass as a reference threshold: solutions with
verified residual mass below this threshold are considered as one suc-
cessful optimization, as they surpass the best outcome observed during
surrogate construction. Out of the 200 runs, the single-surrogate (DNN)
model produced 28 solutions that has a residual concentration below
20.278%, so the frequency is 14%; while the multi-surrogate ensemble
achieved this in 64 runs, so the frequency is 32%. This demonstrates that
the ensemble approach more frequently identifies high-performing
remediation designs that exceed the reference performance level.

Table 6 summarizes key performance statistics from the 200 verified
runs. The multi-surrogate ensemble clearly outperforms the strongest
single-surrogate alternative, delivering a lower median (21.03% vs.
24.05%), lower mean (21.25% vs. 24.63%), and better optimal solution
(15.97% vs. 16.91%).

Notably, the globally best design (15.97% residual mass) originated
from the SVR surrogate rather than the DNN, highlighting the practical
advantage of incorporating diverse surrogates. These results confirm
that even a straightforward ensemble strategy provides measurable
improvements in OOD extrapolation and overall remediation perfor-
mance compared to relying on the single best surrogate.

It is interesting to note that the best optimization schemed is pro-
duced by the SVR surrogate of the multiple-surrogate optimization
framework. It happened again that the best solution is not from the DNN,
which was clearly the most accurate surrogate model in the overall
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validation test.

This result again illustrates the core practical value of the multi-
surrogate approach. By incorporating this diversity, a simple ensemble
strategy reliably delivers better and more robust remediation outcomes
than relying exclusively on the single top-performing surrogate.

4. Discussion
4.1. Advantages of using multiple surrogates

In the field of hydrogeological inversion optimization, surrogate
models have been widely adopted to approximate complex numerical
simulations, to reduce the high computational cost. However, the most
popular practice in previous studies is to adopt a single-model strategy:
researchers typically construct multiple surrogate models, then validate
their predictive accuracy and finally select the single most accurate
model for inversion optimization. This approach rests on the assumption
that a model excelling in overall validation will also yield optimal results
in all of the scenarios and in the optimization phase. However, it is not
the case (Fig. 12 and Table 4). Under our tested conditions, no single
model consistently outperforms others across all scenarios. Instead, each
model has the possibility to generate more accurate results than the
others in the specific cases.

Concerned that this finding might be biased or limited to the specific
field parameters in the paper, we conducted tests in Appendix A to verify
its generalizability. Specifically, we performed 8 additional tests using K
fields with different random patterns and parameters, and we compared
the performance of the five surrogate models. The results remain
consistent: no single model consistently outperforms others. Thus, this
finding is likely to hold true across other new P&T conditions. It may
also extend to the other area that employ surrogate models.

Previous studies in hydrogeological optimization often relied on
single surrogate models for pump-and-treat (P&T) system design (Luo
and Lu, 2014; Majumder and Eldho, 2020; Matott et al., 2006; Qiang
et al., 2024; Song et al., 2025; Zhang et al., 2022). In contrast, our
multiple-surrogate framework independently couples models like DNN
and PolyInterp with the optimization algorithm, comparing their out-
comes to identify superior solutions. For instance, while applying the
conventional single-model strategy would have led us to select the DNN
model for its higher validation accuracy, while PolyInterp achieved the
lowest residual (17.48%, Table 5). Thus, it is advantageous to employ
multiple models to uncover better optimization outcomes (Fig. 12).

We would suggest a multiple surrogate simulation-optimization
framework: rather than selecting a single model based on validation
accuracy, we propose constructing multiple surrogate models, and
conducting separate inversion optimizations for each. By aggregating
the results and performing a comparative analysis, this strategy has the
potential to yield a superior outcome. The success of Polylnterp in
achieving the lowest residual (17.48%) is the valid support for this
strategy.

We acknowledge that previous researchers (Ouyang et al., 2017;
Xing et al., 2019) have also developed the ensemble surrogate for
integrating the strengths of various surrogate models. The ensemble
surrogate has been achieved by assigning dynamic weights to each
surrogate model based on their validation performance.

Goel et al. (2007) tested a series of ensemble surrogate method with
various weighting strategies against individual surrogates and optimi-
zation results. They outlined three effective global weighting ap-
proaches. First, the weights are assigned based on the errors for each
surrogate divided by the total errors, this method provides only a modest
advantage to better models to avoid over-reliance on any one. Second,
the best surrogate per experimental setup is selected and is given full
weight. Third, it represents a tunable method balancing individual
model confidence with averaging to mitigate outliers. Result demon-
strated that ensemble surrogate model by the third method exhibited
higher robustness and accuracy. Importantly, they discovered the “best”
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(b) Polynomial interpolation.
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Fig. 13. Well locations and pumping rates inferred from optimization.

surrogate changed in over 40% of setups under different experiment
design conditions. This inconsistency supports our method of doing in-
dependent optimizations for each surrogate to protect top performers
that might get weakened in the “blending” process of weighting.
(Christelis et al., 2019) also observed that the weighted ensemble sur-
rogate model “did not consistently outperform single surrogates”; and
using the ensemble surrogate for optimization has contributed limited
improvement to the results obtained by using a single model. We are
concerned that if we use the ensemble surrogate method, in scenarios
where a single model excels, its predictive accuracy may be compro-
mised by blending with the other inferior predictions. Thus, the multiple
surrogate simulation optimization framework is favored in this paper.
By coupling each surrogate independently with the optimization algo-
rithm, unique solutions are retained rather than averaged. However, we
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recognize that both ensemble and multiple-model strategies represent
meaningful innovations. Future work should systematically compare
these two strategies across various application conditions.

Besides, some prior work have combined P&T with in-situ remedi-
ation to enhance contaminant treatment performance and optimize
costs (Thornton et al., 2014). Our study focuses on P&T alone to assess
the multiple-surrogate framework, but hybrid cost-saving approaches
are a valuable future direction. Similarly, while some studies employed
injection wells in the P&T site. The injection wells could stabilize
groundwater level and enhance contaminant transport in the remedia-
tion process (Chang et al., 2007). Despite that we didn't employ injection
wells, this omission does not affect our core findings, and injection wells
could be explored in future work.

Despite its advantages, the multiple-surrogate framework requires
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(b) Ensemble-surrogate optimization.
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Fig. 14. Histograms of verified residual contaminant mass from multiple independent GA optimization runs.

Table 5
Optimized P&T parameters and Ryesidual from five surrogate Models.
Surrogate Wells X (m) Y (m) Pumping Rate Riesidual
models (1000 m® / day) (%)
Kriging 1 —223.28 35.68 1.09
2 272.29 —138.59 1.77
3 60.08 —209.51 2.06 21.69
4 87.70 —93.92 2.77
5 7.16 18.36 0.31
Polylnterp 1 119.53 —68.27 2.78
2 —124.81 —160.80 2.05
3 256.26 —196.49 0.08 17.48
4 —24.13 76.05 1.32
5 284.09 —121.05 1.78
SVR 1 —19.49 18.28 1.91
2 321.30 —191.59 2.17
3 9.53 —108.02 2.56 19.31
4 6.53 —308.15 0.49
5 198.95 —141.89 0.87
RF 1 —80.82 —99.97 1.08
2 20.82 —76.25 0.93
3 26.07 —76.40 1.70 19.41
4 181.89 —100.81 3.40
5 233.01 98.61 0.89
DNN 1 —205.90 —76.39 0.55
2 325.18 -73.13 1.01
3 12.32 —177.28 2.31 19.24
4 110.65 —138.63 1.85
5 114.46 —41.12 2.28
Table 6
Median, mean, and best verified residual contaminant mass (%).
Method Median Best Mean
Multi-surrogate 21.03 15.97 21.25
Single-surrogate DNN 24.05 16.91 24.63

more computational cost and human effort. Training and optimizing five
surrogate models significantly increases computational demands
compared to a single-model approach, as each model requires separate
training. This also demands substantial human effort for model setup,
tuning, and validation. However, given the severity of groundwater
contamination and the high costs of P&T remediation, the improved
accuracy from identifying superior solutions may justify these efforts.
To generalize our multiple-surrogate framework to other contami-
nation sites with varying hydrogeological conditions, several data re-
quirements must be met. Detailed aquifer information (structure,
thickness, boundaries, porosity, heterogeneous permeability) needs site-
specific characterization via borehole data or geophysical surveys. Ac-
curate mapping of the contaminant field's spatial distribution is also
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essential to model plume dynamics. The P&T setup conditions, including
well number, placement, and pumping rates, must be tailored to site
realities.

Applying the multiple-surrogate framework to real-world scenarios
requires addressing practical challenges beyond controlled simulations,
including (1) limited data availability, as obtaining comprehensive
aquifer and contaminant data is costly and site-specific; (2) regulatory
and logistical constraints, such as the pumping implementation in the
wells. These challenges may demand increased field efforts but ensure
effective remediation.

4.2. Limitations and perspectives

This study primarily focuses on the development and application of
multiple surrogate models, alongside the design of inversion strategies.
It is a numerical study. If it is expected for real-world P&T applications,
implementing the P&T remediation (using or not using the multiple-
surrogate method) requires firstly, characterizing aquifer heterogene-
ity (via pumping tests or borehole data); and the exact contamination
concentration distribution by methods like tracer tests or geophysical
mapping. These are the important basics for P&T system design.

There are several limitations. First, we didn't consider the injection
wells that reinject the treated-water into the groundwater. Although it is
not considered in this work, it is entirely feasible to incorporate injection
strategies, and we plan to explore this in future research. Second, the
optimization assumes fixed pumping rates. The advantage of dynamic
adjustments according to real-time conditions are not considered. We
can implement dynamic adjustments of pumping rates to further
enhance remediation effectiveness like (Wang and Zheng, 1997). Last
but not least, no constraints have been incorporated into the optimiza-
tion process. For example, it requires to implement a maximum allow-
able hydraulic drawdown to prevent aquifer overexploitation. But these
should not avoid our findings related to multiple-surrogate framework.

In this study, the groundwater flow field induced by pump-and-treat
operations was approximated as steady-state to improve computational
efficiency. This approximation does not fully account for transient
drawdown propagation and the evolving hydraulic gradients during the
early pumping phase. Consequently, this could lead to modestly faster
predicted plume migration and earlier capture of contaminant mass
compared to fully transient simulations. If the proposed method will be
applied to realistic field-scale problems, it is necessary to adopt fully
transient flow simulations as the standard approach.

A notable limitation of the present study is the linear min-max
rescaling applied to the hydraulic conductivity fields. After generation
by a Gaussian model, each field was rescaled to confine values strictly
within the range [—6, —4] m/s. This setup was implemented to force the
logK values to desired ranges. However, this may reduce the occurrence
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and intensity of extreme high- and low-permeability zones. Conse-
quently, the rescaled fields may lead to somewhat weaker tailing effects
in the simulated remediation process. In future work, we plan to avoid
such artificial bounding by accepting the natural range of each reali-
zation, thereby more fully representing the inherent variability of
randomly generated fields.

Future research aims to develop an adaptive method to address the
challenge of insufficient field data in real-world groundwater remedia-
tion. Given that field data is often limited, we propose using data
collected during the P&T process to iteratively characterize aquifer
properties (e.g., heterogeneous permeability) and contaminant distri-
butions (e.g., plume dynamics). This approach starts with a preliminary
remediation scheme based on insufficient data and refines it as new data
is gathered, optimizing well placement and pumping rates dynamically.
Integrating this method with real-time monitoring systems, such as
sensors for contaminant concentrations, can further enhance adaptive
P&T strategies. This make our method more effective for practical
applications.

In term of the surrogate models, we recognize the potential for
integrating advanced lumped or effective upscaling models to enhance
predictive capabilities. For instance, the multirate mass-transfer
(MRMT) model effectively upscales anomalous solute transport in het-
erogeneous media under radial convergent flow by linking apparent
capacity coefficients to aquifer anisotropy and connectivity (Pedretti
et al., 2014). Thus, we plan to develop novel surrogate method that
integrate with MRMT-like formulations to further improve the optimi-
zation framework.

This study employs a 2D synthetic aquifer to simulate horizontal flow
and contaminant transport, providing a simplified system to efficiently
evaluate the multiple-surrogate optimization framework. However, real-
world aquifers are inherently three-dimensional, exhibiting vertical
variations in hydraulic properties and flow dynamics. Transitioning to a
3D simulation model would likely introduce key differences in results
across three main aspects: (1) increased difficulty in characterizing
aquifer parameters and contaminant distributions, potentially leading to
inaccuracies if data is limited; (2) the residual contaminant masses
should be lower because as 3D models capture layered permeability or
preferential flow paths that may cause some contaminants to remain
unaffected; (3) the effect of vertical boundary conditions should be
considered because the upcoming or leakage from overlying/underlying
layers can significantly influence the fate of contaminant. While our 2D
model effectively demonstrates the multiple-surrogate framework's ad-
vantages, adopting 3D modeling in future work could enhance realism
for complex aquifer systems. This study is carried out on the idealized
assumption that aquifer parameters and contaminant fields are perfectly
known. In the future, we will develop probabilistic approaches to
address the uncertainties of these information.

5. Conclusions

This study aimed to develop improved surrogate modeling ap-
proaches to optimize Pump-and-Treatment (P&T) system design for
groundwater remediation. The parameters to be designed include the
spatial coordinates of extraction wells and pumping rates for each well.
The ultimate goal is to support effective environmental contamination
management. We systematically assessed five state-of-the-art surrogate
models — Kriging, Polynomial Interpolation (PolyInterp), Support Vector
Regression (SVR), Random Forest (RF), and Deep Neural Network
(DNN) - to determine their effectiveness in designing P&T schemes. The
results demonstrate that the DNN model demonstrated statistically su-
perior predictive accuracy. This reflects that the deep learning neuro
network model is advantageous at learning nonlinear relationships in
contaminant transport modeling.

While, our most striking finding is that no single model consistently
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outperforms others across all scenarios. Although DNN achieved the
highest predictive accuracy, it only generated the best prediction results
in 46 out of 200 cases. Conversely, some models show lower overall
validation accuracy, they still produced optimal solutions in many cases
(for example, Random Forest model has the lowest validation accuracy,
but it generated 47 best predictions out of 200 validations). These
findings demonstrate that we cannot identify a universally “best” sur-
rogate model.

The above findings suggest that employing a multiple surrogate
simulation-optimization framework could be beneficial. In this frame-
work, each surrogate model (Kriging, PolyInterp, SVR, RF, and DNN) is
independently trained and employed for optimization. Our experi-
mental tests confirmed that this framework has contributed to better
results: a P&T scheme that achieved higher contaminant remediation
efficiency and lower final residual contaminant (17. 5% compared to
19.2-21.7%). It is also interesting to note that, this P&T scheme sug-
gested that we can remove one of the 5 pumping wells. It could signif-
icantly reduce the implement cost for the P&T scheme while didn't harm
the remediation results.

This study highlights that it is beneficial to move beyond conven-
tional approach that relying on single “best-performing” surrogate
model in simulation-optimization studies. While advanced models like
DNN exhibited the highest predictive accuracy, their optimization per-
formance does not necessarily arrive at the superior remediation solu-
tion. Instead, we can use a multiple-surrogate framework to let the
advantages of all different surrogate models be fully used. Using the
multiple-surrogate framework has been proved at least in this work to be
more effective in identifying effective and cost-efficient P&T schemes.
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Appendix A. Appendix

To assess the robustness of surrogate model performance against realization-specific biases and parameter variations, we generated 8 additional
independent K fields. As shown in Fig. A1, the first 4 K fields are generated with the same parameters (correlation length 100 m; logK bounds —6 to —4
m/s), but each has a distinct random pattern. The K fields 5-8 have various parameters: 5 and 6 use larger correlation lengths of 200 m; 7 and 8 use
smaller correlation lengths of 80 m. While K field 5 and K field 7 kept the logK bounds of —6 to —4 m/s, while 6 and 8 are assigned with larger bounds
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Fig. Al. The 8 new K fields.

For each K field, we used the same setup with the manuscript to build the surrogate models. Specifically, we first conducted 1200 numerical
simulations of the pollutant extraction process, with randomly generated parameters (positions and pumping rates of the 5 wells) and the final residual
contaminant mass is recorded. Second, the training dataset was formed by combining these random parameters and residual masses (1000 samples for
training, 200 for validation). Third, all 5 surrogate models (Kriging, PolyInterp, SVR, RF, DNN) were built and trained for each field. Performances
were evaluated on the validation set using RMSE (Root Mean Square Error) and the results are provided in Table Al.
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Table Al

RMSE values of the supplement validation tests (The model with lowest error in each test is marked by underline).
K fields Kriging Polylnterp SVR RF DNN
1 0.1923 0.2018 0.1882 0.2333 0.1889
2 0.1677 0.1882 0.1662 0.2182 0.1612
3 0.1574 0.1760 0.1577 0.2167 0.1539
4 0.1789 0.1947 0.1717 0.2337 0.1676
5 0.1878 0.1964 0.1793 0.2321 0.1768
6 0.1977 0.2051 0.1961 0.2346 0.1943
7 0.2051 0.2170 0.1974 0.2425 0.1981
8 0.1757 0.1952 0.1690 0.2305 0.1715

Since lower RMSE indicates better predictive accuracy, we can find that the SVR and DNN models are most accurate in all of the tests. The Random

Forest model (RF) is less accurate in this overall validation stage.

We also counted how many times each surrogate model gave the lowest RMSE in the 200 validation samples per field. The results are shown in
Table A2. Model RF exhibited a higher frequency for giving superior performance: usually more than 47 out of 200. The quantities are different.
However, no model recorded zero instances. Despite that model Kriging exhibited much less top-performing instances, it still yielded the most accurate

predictions in 10 to 40 cases per test.

Table A2

Top-performing instances of five surrogates in the supplement validation tests.
K fields Kriging PolyInterp SVR RF DNN
1 15 38 48 58 41
2 33 37 40 58 32
3 21 44 48 52 35
4 23 38 50 47 42
5 22 39 46 52 41
6 22 38 48 54 38
7 26 35 45 56 38
8 23 33 51 47 46

These results can support “no single model consistently outperforms others across all scenarios.”. Although we did not extend to more fields, we
still estimate that specific counts would shift with various K fields, but the pattern should persist: no model is always the most accurate, and no model
is always the least accurate. These results should be supportive to our conclusion that no single surrogate model consistently outperforms the others

across all scenarios.
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