
Multi-Range Query in Commodity RFID Systems
Yanyan Wang†‡ Jia Liu‡ Zhihao Qu† Shen-Huan Lyu†‡§ Bin Tang† Baoliu Ye‡

†Key Laboratory of Water Big Data Technology of Ministry of Water Resources,
College of Computer Science and Software Engineering, Hohai University, Nanjing, China
‡State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
§ Department of Computer Science, City University of Hong Kong, Hong Kong, China

{yanyan.wang, quzhihao, lvsh, cstb}@hhu.edu.cn, {jialiu, yebl}@nju.edu.cn

Abstract—Range Query (RQ) is to check whether there are
any RFID tags with data beyond a given range. With about
46 billion RFID tags sold worldwide in 2023, time-efficient RQ
becomes increasingly important for practical use, which can help
users quickly pinpoint the target tags (if any) and give an early
warning (e.g., fire alarm) to them for taking urgent actions and
reducing the potential risk. However, existing work can deal with
only a single range rather than multiple ranges that are very
common in real-world applications. For example, foods in the
refrigerator and the freezer have different temperature ranges
for safe storing; treating them as one would probably give rise
to query errors. In this paper, we study an under-investigated
problem called multi-range query, which aims to achieve RQ in an
RFID system with multiple query ranges. We propose a tailored
protocol called anomalous tag identification (ATI) that quickly
separates target tags from others and avoids querying all tags
for saving communication overhead. In ATI, we design a fixed-
length encoding vector together with standards-compliant select
commands to deal with different ranges individually, without the
need for any hardware modification. We implement the proposed
protocols in commodity RFID systems. Experimental results show
that ATI is superior to the baseline under different parameters,
in terms of the time efficiency and space efficiency.

Index Terms—RFID, multi-range query, C1G2, time efficiency

I. INTRODUCTION

Radio frequency identification (RFID) has been widely used
in a variety of applications, including library inventory [1],
[2], human-machine interaction [3]–[7], object localization and
tracking [8]–[12], warehouse management [13]–[19], etc. In
these applications, each object is attached with an RFID tag
to provide unique identification and additional information for
item-level intelligence. To meet the increasing demand for
real-time data collection and digital business, RFID sensors
have been developed and integrated into RFID tags. In a
sensor-augmented RFID system, the tag is capable of carrying
some dynamic sensing data, such as temperature and humidity.
By communicating with tags and collecting their data, we can
achieve real-time information about the state of tagged objects
or monitor their surroundings.

Range Query (RQ) is to check whether there are any RFID
tags with data beyond a given range, which is one of research
branches of RFID and plays a major role in RFID-enabled

*Corresponding authors: Zhihao Qu and Shen-Huan Lyu.

applications. In 2023, with about 46 billion RFID tags sold
worldwide, time-efficient RQ becomes increasingly important
for practical use, which can help users quickly pinpoint the
target tags (if any) and give an early warning (e.g., fire alarm)
to them for taking urgent actions and reducing the potential
risk. For example, consider a chilled food storage chamber
(or a library), where each food (or each bookshelf) is affixed
with a sensor-augmented tag equipped with a thermal sensor.
If the temperature data of a tag is higher than a threshold, an
advance warning (for food to be spoiled or for fire) will be
activated to protect people and assets.

In recent years, some advanced work has been proposed
to address the range query problem in a time-efficient way
[20], [21]. However, existing range query work can deal with
only a single range rather than multiple ranges that are very
common in real-world applications. For example, foods in
the refrigerator and the freezer have different temperature
ranges for safe storing — frozen food typically falls within
the range from −24◦C to −18◦C, while refrigerated food
requires temperatures between 2◦C and 8◦C. If we treat them
as one, the system probably give rise to query errors. For
example, if we focus on only the interval [−24◦C, −18◦C] of
frozen food, the refrigerated food with the normal temperature
range [2◦C, 8◦C] will respond to the reader, leading to extra
communication overhead and even incorrect queries.

An intuitive solution for multi-range anomalous tag iden-
tification is to collect data from all tags and check if any
tags have data beyond their expected range. This works but
suffers from long time delays in large systems with numerous
tags, especially when the number of anomalous tags is far
less than that of all tags. In recent years, some advanced
approaches have been proposed to expedite the information
collection process [22]–[25]. These solutions, however, have
two limitations: they cannot be implemented in a commodity
RFID system since they are incompatible with the EPCglobal
Class1 Gen2 (C1G2) [26]; they need to query all tags, which
is time-consuming.

In this paper, we study the under-investigated problem of
multi-range query, which aims to achieve RQ in an RFID
system with multiple query ranges. We propose a tailored
protocol called anomalous tag identification (ATI). The basic
design idea is to partition the entire tag set into multiple
groups, each of which contains tags with data falling into the979-8-3315-4940-4/25/$31.00 © 2025 IEEE

same range. When monitoring a particular range, we separate
the anomalous tags (with data beyond the specific range) from
other tags within the same group, which enables us to avoid
the interference of tags in other groups and identify only
the anomalous tags (if any) of this group. To achieve this
goal, we design a fixed-length encoding vector together with
standards-compliant select commands to deal with each range
(group) in turn – the encoding vector helps save the number
of masks (i.e., the communication overhead) and the select
commands are used to pick tags that match a given mask.
By this means, we can silence a majority of non-target tags
and identify anomalous tags within a group by carrying out an
inventory frame with the standards-compliant query command.
We implement a prototype in commercial RFID systems with
500 tags and experimental results show the good performance
of ATI. The main contributions of this paper are three-fold.

• To the best of our knowledge, we are the first to study
multi-range query, which helps users quickly and accu-
rately identify anomalous tags and reduce the potential
losses in an RFID system with multiple query ranges.

• We propose a protocol called anomalous tag identification
(ATI) that quickly separates target tags from others and
avoids querying all tags for saving communication over-
head by designing a fixed-length encoding vector together
with standards-compliant select commands.

• We implement a prototype of ATI in a commodity RFID
system with 500 tags. Extensive experiments show that
ATI improves the time efficiency of range identification
by 1.3 ×, compared with the baseline, with 10 ranges,
300 tags, and 5 anomalous tags in one anomalous range.

The rest of the paper is organized as follows. Section
II formulates the problem of multi-range query. Section III
presents ATI. Section IV evaluates the performance of ATI.
Section V discusses the related work. Finally, Section VI
concludes this paper.

II. PROBLEM FORMULATION

A. Problem Definition

We consider a sensor-augmented system that consists of
a reader and a number of tags. Each tag has a unique ID
that indicates the object it attaches to. By collecting relevant
information from tags, the reader can get the real-time status
of the surrounding environment (e.g., temperature, humidity,
etc.). Different objects may have distinct requirements, leading
to varying data ranges of interest. Consequently, tags attached
to different objects may store data within different ranges.
The problem of multi-range query is to identify tags with
data beyond their expected ranges. These tags are referred
to as anomalous tags (or target tags). Specifically, consider
a tag set Γ = {Γ1,Γ2, . . . ,Γm}, where each subset Γi =
{t1, t2, . . . , tni

} (1≤i≤m) represents a distinct group of tags
and m is the number of given normal data ranges. For Γi, the
expected data range of each tag tj that holds data dj , 1≤j≤ni,
is Di = [li, ui], where li and ui are the lower and upper
boundaries of Di, respectively. We assume that the value of dj

is a non-negative integer, each of which represents a dynamic
status of surroundings. For instance, the general temperature
range for frozen food, which spans from [−24◦C, −18◦C]
with a resolution of 0.01◦C, can be mapped to the integer
interval [0, 600]. Our objective is to identify anomalous tags
within Γi (1 ≤ i ≤ m), which refers to tags whose data dj with
data beyond its expected range Di. High time efficiency and
accuracy are two essential requirements that enable accurate
and timely warnings to users, minimizing potential losses.

B. Basic Solutions

To identify anomalous tags in Γi (1≤i≤m), an intuitive
solution is to query each tag in the system and check whether
its data falls within its corresponding expected range. If yes,
the tag is considered normal; otherwise, it is anomalous. How-
ever, this basic collection results in high time overhead as it
requires inventorying the entire tag set for each identification,
even when monitoring anomalies within a limited number of
ranges of interest rather than all ranges.

The recent Range query (RQ) [20], [21] can pinpoint
anomalous tags in Γi when m is 1, but it struggles in a multi-
range scenario, because it cannot distinguish anomalous tags
of one range from normal tags of other ranges, leading to false
alarms. To make RQ work properly in our problem, we make
some modifications on this work and give a baseline protocol
for comparison in the following.

Given a data range Di = [li, ui], RQ first partitions Γ into
two subsets: Γ

′

i, which contains all tags whose data falls within
Di, and Γ − Γ

′

i, which contains the rest of tags. Note that
Γ

′

i ⊈ Γi as it is possible for certain anomalous tags from
other ranges to also fall within Di. Instead of querying tags
in Γ − Γ

′

i that includes the anomalous tags (if any) of Γi

and tags from Γ − Γi, the modified RQ approach (mRQ)
directly queries the tags in Γ

′

i and compares them with the
expected range Γi. If Γi ⊆ Γ

′

i, all tags in Γi are considered
normal; otherwise, any anomalous tags within Γi − Γ

′

i can
be identified. The partition process is accomplished by using
the Select command specified in EPCglobal Class1 Gen2
(C1G2) [26]. This command is issued before the inventory
operation, enabling a reader to selectively choose a subset of
tags that participate in the subsequent query, optimizing the
query process by narrowing down the scope of tags involved.

Although mRQ can successfully identify anomalous tags in
Γi, the querying process for tags in Γ

′

i leads to time overhead.
In practical scenarios, the number of anomalous tags in Γi is
typically small, and Γ

′

i closely approximates Γi. In addition,
when all tags in a system are associated with multiple ranges,
and all ranges are of interest, mRQ incurs an even higher time
overhead than the basic collection.

III. ANOMALOUS TAG IDENTIFICATION

In this section, we propose an anomalous tag identification
protocol (ATI), which builds a fixed-length encoding vector
incorporates grouping information to effectively query only
the anomalous tags. This improves the time efficiency of
identifying anomalous tags in scenarios where the normal data

1 0 1 0

Command

... b1 b2 ... bm

Action

Pointer(EBV)

See Table I

Pointer = p Mask = b1b2 bm

Mask

Target Membank

Mask Length

000: S0

001: S1

010: S2

011: S3

100: SL

101: RFU

110: RFU

111: RFU

00: FileType

01: EPC

10: TID

11: File_0

Mask Length = m

Membank

1 2 ... p

Fig. 1. Select Command

of tags spans multiple ranges. In what follows, we first discuss
the functionalities within the scope of the C1G2 standard and
then describe the details of ATI.

A. C1G2 Function

As specified in C1G2 [26], a reader can perform a select
operation to choose a subset of tags for querying. We now
describe how to use the Select command to select a subset
of tags as required and subsequently execute the inventory
operation using the Query command.

1) Select Command: One Select command actually sets
the inventoried flags of tags to two distinct states by specifying
a mask string. By issuing one or more Select commands,
we have the flexibility to choose a subset of tags as required.
The command consists of six fields, as shown in Fig. 1.
• Membank(b), Pointer(p), Length(l), Mask(m). These

four fields collectively determine the matching of tags.
MemBank specifies the memory bank for comparison, with
four distinct memory banks available. Membank-0 is usually
reserved, Membank-1 stores the Electronic Product Code
(EPC), Membank-2 stores TID (tag- and manufacturer-specific
data), and Membank-3 is user memory for customized data.
In this work, we have fixed the MemBank to 3, as it is a
common choice for many applications. Pointer indicates
the starting bit position in the chosen memory bank. Length
determines the length of Mask, which is a customized bit
string based on application requirements. Upon receiving a
Select command, a tag compares the data in its desig-
nated Membank starting from the Pointer position to the
subsequent Length bits. If the data matches the specified
Mask sub-string, the tag is deemed a match; otherwise, it is
considered a non-match.
• Target(t), Action(a). These two fields determine the

modification of flags for a group of tags. By applying masks
and modifying the flags, the Select command sets the flags
of matching tags to a specific value, while the flags of non-
matching tags are set to the opposite value. Target represents
either the selected flag (SL) or the inventoried flag, which
serves as an access control indicator for the tags. The first
bit in Target indicates which flag will be modified (0 for
inventoried flag and 1 for SL). The remaining two bits indicate
the session in which the tags will participate. C1G2 defines
four sessions, each with a different persistent time that the tag
holds the inventoried flag. These two bits are irrelevant for
the selected flag (SL). In this paper, we utilize the inventoried

Table I: Eight Actions of Select

Action Tag Matching Tag Not-Matching Abbr.

000

001

010

011

100

101

110

111

assert SL or inventoried A

do nothing

negate SL or (A B, B A)

negate SL or (A B, B A)

assert SL or inventoried A

assert SL or inventoried A

deassert SL or inventoried B

deassert SL or inventoried B

do nothing

do nothing

deassert SL or inventoried B

deassert SL or inventoried B

do nothing

do nothing

do nothing

AB

A-

-B

S-

BA

B-

-A

-S

assert SL or inventoried A

flag in session 2 as a metric to demonstrate our protocol
design. Action determines how the chosen flags will be set
or modified. Table I lists eight actions, allowing matching and
non-matching tags to assert or deassert their SL flags, or set
their inventoried flags to A or B.

2) Query Command: The Query command initiates and
specifies an inventory round. After the Select commands
have set the special flags of the tags, the subsequent Query
command uses these flags to determine which tags participate
in the inventory round. In this work, we concern three fields:
Sel, Session, and Target. The Sel field consists of two
bits that determine which tags will respond to the reader: 002
and 012 indicate all matching tags selected by the previous
Select command, 102 indicates tags with a deasserted
(∼SL) flag, and 112 indicates tags with an asserted SL flag.
Since SL is not used in this paper, this field is always set to
0. Session selects the session for the inventory frame. In
this paper, we use session 2 (S2), and accordingly, the value
is set to 2 (102). Target determines the participation of tags
in the inventory frame: 0 for flag A and 1 for flag B. After
being successfully queried, tags will have their inventoried
flags inverted, switching between A and B.

B. ATI Protocol

ATI determines if any tags, whose data should normally fall
within the range Di = [li, ui], are now beyond that range. To
achieve this, ATI excludes tags belonging to

⋃m−1
j=1,j ̸=i Γj ∪Γ

′

i

and queries the remaining tags. Γ
′

i contains all tags whose data
falls within Di. Next, we describe the process of selecting
tags in different scenarios: data between the upper and lower
boundaries of Di (LUS), data not greater than ui (LS), and
data not less than li (US). We first detail LS and then gener-
alize to US and LUS. Moreover, to suppress interference tags
from

⋃m−1
j=1,j ̸=i Γj ∪ Γ

′

i, ATI employs a fixed-length encoding
vector to strike a balance between time and space efficiency.

1) Encoding Vector: For clarity, we will use τ as a unified
symbol to represent the upper boundary ui. In range query
works, the number of selects required to label tags whose data
falls within the range [0, τ] depends on the value of τ . One
observation is that τ often corresponds to a decimal value
of many trailing zeros. For example, consider a temperature
range for a certain type of food, denoted as [a◦C, b◦C], with a
resolution of 0.01◦C. This range can be mapped to the integer
interval [0, c00], where c = b−a. If the resolution is 0.001◦C,
the interval will be [0, c000]. In common cases, the difference
value c between b and a is relatively small. To optimize the

number of selects and reduce memory space requirements, we
design a fixed-length encoding vector that takes advantage of
the trailing zeros in the integer representation of the range.

We use a bit vector set V = {v0, v1, · · · , v9} to represent
the digits from 0 to 9. Each digit is encoded using a 4-
bit vector. The encoding scheme follows the principle of
selecting 9 binary strings that have a minimal number of 1s
or consecutive 1s, ranging from 0 to 24 − 1. This is based on
the fact that, according to [20], the number of selects for a
binary representation of τ is f(τ) = |R(τ)|−d(τ)+1, where
|R(τ)| is the number of ones in τ ’s binary representation and
d(τ) is the number of consecutive rightmost ones. The specific
encoding for the digits 0 to 9 is as follows:

0 : ‘0000’, 1 : ‘0001’, 2 : ‘0010’, 3 : ‘0011’, 4 : ‘0100’,
5 : ‘0111’, 6 : ‘1000’, 7 : ‘1001’, 8 : ‘1010’, 9 : ‘1111’.

Hence, we have V = {‘0000’, ‘0001’, ‘0010’, ‘0011’, ‘0100’,
‘0111’, ‘1000’, ‘1001’, ‘1010’, ‘1111’}, and we use EV (d) to
represent the encoding vector of data d.

The encoding vector’s design directly affects the number of
select commands, which consequently influences the overall
execution time. To evaluate its performance, we conduct a
simulation and compare ATI with existing range query pro-
tocols (RQ, EnRQ4, EnRQ10, and EnRQ16) for selecting all
numbers in the range [0, τ]. The results are shown in Fig. 2.
We can see that ATI requires fewer selects than RQ, EnRQ4,
and EnRQ16. Although EnRQ10 requires fewer selects than
ATI, it requires more memory space. For example, when τ is
20,000, the length of the encoding vector in ATI is 5×4 = 20
bits, while EnRQ10 requires 5 × 9 = 45 bits, which is more
than twice the length of the encoding vector. Despite this, the
number of selects required by EnRQ10 is only one less than
that of the encoding vector in some cases. This indicates that
the encoding vector in ATI offers a good trade-off between
time efficiency and memory space.

Recall that when selecting tags with data in one range, it
is necessary to silence the tags associated with other ranges.
To accomplish this, we assign a unique group string to each
group of tags associated with the same range. This group
string remains fixed, and selecting tags from a range only
requires a single select command. Therefore, to represent the
m ranges, we use the space-saving binary strings from 1 to m.
For example, if m = 3, the group vector, denoted by {G()},
is {012, 102, 112}. We combine the encoding vector for data
information with the group vector for grouping information.
For a tag associated with the first data range (belonging to the
first group), with a collected data 45, the final encoding result
is ’0101000111’.

2) Design of Mask: In this subsection, we will discuss the
masking process with the data set of {di}, which is represented
as {EV (di)} in a tag’s memory. We denote the number of
digits in τ as lτ , and the data of interest ranges from 0 to
10lτ − 1. Consider three special cases that τ = {10, 6, 4} ×

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 (1,000)

2

4

6

8

10

N
u

m
b

e
r

o
f

se
le

c
ts

ATI RQ EnRQ4 EnRQ10 EnRQ16

Fig. 2. Number of selects.
10w−1 − 1, where w < lτ . The EV (τ) is:

4︷ ︸︸ ︷
0 0 0 0︸ ︷︷ ︸. . .

4︷ ︸︸ ︷
0 0 0 0︸ ︷︷ ︸︸ ︷︷ ︸

(lτ−w)×4

4︷ ︸︸ ︷
0 x 1 1︸ ︷︷ ︸. . .

4︷ ︸︸ ︷
1 1 1 1︸ ︷︷ ︸︸ ︷︷ ︸

w×4

. (1)

Clearly, the left most (lτ −w)×4+1 bits are all zeros. When
x = 1, the rightmost 4w−1 bits are all ones. For any number
larger than 6 × 10w − 1, the rightmost 4w − 1 digits start
over, and next digit is incremented. As a result, the leftmost
(lτ − w) × 4 + 1 bits will not all be zeros. Conversely, for
numbers smaller than 6× 10w − 1, the leftmost (lτ −w)× 4
bits must be zeros, as any non-zero value in those bits would
make the number larger than 6× 10w − 1. Therefore, we can
use the leftmost (lτ − w)× 4 + 1 bits as a mask to select all
numbers in the range of [1, τ], effectively activating the tags
associated with data within that range. Similarly, when x = 0,
we can use the leftmost (lτ − w)× 4 + 2 bits as a mask.

For the special cases mentioned above, we can make some
modifications to generalize them and cover all numbers in the
range [1, τ]. Given any τ , it can be expressed as:

0. . .0 X1. . .X2 . . . 0. . .0︸ ︷︷ ︸
z(τ)

Y . . .9︸ ︷︷ ︸
d(τ)

, (2)

where 0 < X1, X2 < 9, and Y is 3 or 5. d(τ) counts
consecutive rightmost digits in τ that are 9 or a single 3 (or
5) followed by some 9s, and z(τ) counts consecutive digit 0s
before the consecutive rightmost 9s. Correspondingly, EV (τ)
can be expressed as:

4︷ ︸︸ ︷
0 0 0 0

4︷ ︸︸ ︷
b1
↑
1

b2
↑
2

b3
↑
3

b4
↑
4

. . .

4︷ ︸︸ ︷
0 0 0 0. . .

4︷ ︸︸ ︷
0 0 0 0︸ ︷︷ ︸

z(τ)

4︷ ︸︸ ︷
0 x 1 1. . .

4︷ ︸︸ ︷
1 1 1 1︸ ︷︷ ︸

d(τ)

,

(3)
where b1−4 can be 0 or 1.

For LS, the main idea is to find a mask that covers the
largest sub-interval of [0, τ] to minimize the number of selects
required. In our design, the upper boundary value for this
interval is given by (u1+1)×10lτ−1−1, where u1 depends on
the first non-zero digit in EV (τ). If the first non-zero bit is at
position b2, we set this bit to 0, resulting in b1b2b3b4 = ’00xx’,
where x represents a binary bit. Then, u1 is determined as the
value in V where the first two bits are 0. In this case, ‘0000’,
‘0001’, ‘0010’, and ‘0011’ correspond to u1 = 0, u1 = 1,
u1 = 2, and u1 = 3, respectively. We denote the smallest
and largest value as u1 and u′

1, respectively. For example,
given a number 8053. For the first digit 8, the encoding vector
v8 = ’1010’. By setting the first bit of v8 to 0, the largest value
in V with the first one bit as 0 is ‘0111’, which corresponds to

u′
1 = 5. Hence, the upper boundary value of the sub-interval

can be calculated as (u′
1+1)× 10lτ−1− 1 = 5999. The mask

string is the left bits before the first ‘1’ in EV (τ), together
with another ‘0’. In this example, the mask string is ‘0’, which
allows selecting all the values within the range [0, 5999].

After that, we can repeat this process recursively. In the i-th
select (i > 1, k = 1), k represents the position of the digits
in τ , starting from the most significant digit with position 1.
We mask the numbers in the sub-interval:[

ui × 10lτ−1, (u′
i + 1)× 10lτ−1 − 1

]
, (4)

where ui and u′
i are the smallest and largest values in V , that

should match the string obtained from the digits of v(k) before
the i-th bit, with an additional 0 added at the i-th position. For
k > 1, Sk−1 represents the number formed by the digits before
the k position of τ , calculated as

∑k−1
j=1 Xj × 10lτ−j . We can

mask the numbers within this sub-interval:k−1∑
j=1

Xj10
lτ−j+ui10

lτ−1,

k−1∑
j=1

Xj10
lτ−j+(u′

i + 1)10lτ−1

 ,

(5)
In the second selection of 8053, setting the second ’1’ of

v8 to 0 yields u2 = 6 and u′
2 = 7. We can use the mask string

’100’ to select the numbers in [6000, 7999]. For each digit, we
process each bit that is a ’1’ starting from the first ’1’ until
u′
i = Xi−1. In this case, u′

2 = 7. Moving on to the other digits
in EV (τ), we skip the leading zeros before the first ’1’ of the
other digits in EV (τ), which is the first ’1’ of v5, resulting in
u3 = 0 and u′

3 = 3. At this point, k = 3, and Sk−1 = 8000.
The mask string ’1010000000’ (bits of EV (τ) before the first
’1’ of v5 with a ’0’ added) to select the numbers within the
range [8000, 8039].

When z(τ) > 0 and d(τ) > 0, we can skip the 4z(τ) bits
in EV (τ) without needing extra selects, and deal with the
rightmost consecutive 1s in EV (τ) by one select. For example,
given the number 8059, three mask strings are used in total:

1⃝ [0, 5999]← mask : 0,

2⃝ [6000, 7999]← mask : 100,

3⃝ [8000, 8059]← mask : 101000000.

(6)

If z(τ) > 0 and d(τ) = 0, a new string is required to mask the
number τ . Given the number 460, three masks are required:

1⃝ [0, 399]← mask : 00,

2⃝ [400, 459]← mask : 01000,

3⃝ [460]← mask : 010010000000.

(7)

For clarity, we provide the corresponding mask substrings
to be added for each digit in Table II. The submask differs
when k < lτ and k = lτ . Considering the number obtained
by reversing the digits of 460, which is 064, the masks are:

1⃝ [0, 59]← mask : 0,

2⃝ [60, 63]← mask : 100000,

3⃝ [64]← mask : 1000010.

(8)

Table II: Submasks of Each Digit

Digits Submasks (k < lτ) Submasks (k = lτ)

0 - {0000}
1 {0000} {000}
2 {000} {000, 0010}
3 {000, 0010} {00}
4 {00} {00, 010}
5 {00, 0100} {0}
6 {0} {0, 1000}
7 {0, 1000} {0, 100}
8 {0, 100} {0, 100}
9 {0, 10} -

Algorithm 1: Get Masks in ATI
Input : The boundary τ
Output: The mask set MS to select numbers in [0, τ]

1 Get EV (τ), lτ , d′(τ);
2 if τ = {10, 6, 4} × 10w−1 − 1 then
3 add ′0 . . . 0′︸ ︷︷ ︸ to MS;
4 else
5 initialize MS as an empty set;
6 for i = 1 to lτ − d′(τ)− 1 do
7 if digit at position i is not 0 then
8 add Premask(i) + Submask(i) to MS;
9 end

10 end
11 if d′(τ) > 0 then
12 add Premask(lτ − d′(τ)) + Submask(lτ − d′(τ))

to MS;
13 end
14 else
15 add Premask(lτ − d′(τ)) +

SubmaskLast(lτ − d′(τ)) to MS;
16 end
17 end
18 return MS;

Alg. 1 outlines the masking process to generate a mask
set MS for selecting numbers in the interval [1, τ]. Given the
boundary τ , we first get EV (τ). Then, we get the length lτ of
EV (τ) and the number of consecutive 9 in EV (τ), denoted as
d′(τ). If τ satisfies the condition τ = {10, 6, 4}× 10w−1− 1,
the algorithm adds a single mask string consisting of zeros
before the first 1 in EV (τ) (Lines 2-3). This mask string is
sufficient to select all numbers in the interval [1, τ]. For the
general case, outlined in Lines 5-18, the algorithm iterates
through the digits of τ . It skips digit 0 for the first lτ−d′(τ)−1
digits and constructs a mask string by combining the Premask,
which consists of the 4(i−1) bits of EV (τ), with the Submask
of each digit. For the (lτ −d′(τ))th digit, it adds the Premask
string, which consists of the 4(lτ − d′(τ)− 1) bits of EV (τ),
and the Submask string of this digit as when k = lτ . Finally,
the algorithm returns the resulting mask set MS.

3) ATI Description: To identify anomalous tags associated
with m ranges, ATI follows a process that involves m rounds,
each comprising several selects and a query. We first describe
the process for LS and then generalize it to US and LUS.
To silence tags with data in the range [0, τ], we use carefully
designed Select commands to set their inventoried flags.

The Select command can be simply denoted as:

S(t︸︷︷︸
Target

,

Action︷︸︸︷
a , b︸︷︷︸

MemBank

,

Pointer︷︸︸︷
p , l︸︷︷︸

Length

,

Mask︷︸︸︷
m). (9)

The six fields and the masking process for numbers in [0, τ]
have been explained in Section III-A and Section III-B2, re-
spectively. Using the mask set obtained from Alg.1, we design
the corresponding Select commands to set the inventoried
flags of matching tags to B and the flags of other tags to A.
For the first mask, we silence the matching tags and activate
the rest. The Select is:

Flag← BA : S(2, a=4, 3, p′, len1,mask1), (10)

where a = 4 denotes the action of BA, mask is the mask
set obtained from Alg. 1, leni is the length of the i-th mask
string, and maski is the i-th mask string. Tags matching the
substring specified by mask1 from the p′-th bit will have their
inventoried flag set to B, while the remaining tags will have
their flags set to A. For the rest masks in masks set, we only
need to silence the matching tags. The Select is:

Flag← B− : S(2, a=5, 3, p′, leni,maski), (11)

where a = 5 means the action of B−.
So far, we have discussed silencing tags whose data fall

within the range [0, τ]. To silence tags with data in [τL, τU]
(LUS), we first silence tags with data in the range [0, τU] (LS).
Then, we use A− instead of B− to silence the tags with data
larger than τL (US). This ensures that only the tags within the
interval [τL, τU] with the flag set to B.

Alg. 2 shows how ATI identifies anomalous tags within
the range [τL, τU]. The mask sets maskU and maskL are
obtained using the getMasks function in Alg. 1 (Lines 1 and
2). ATI selects tags with data in the range [0, τU] using B−
action, except for the first command which uses the BA action
(Line 5). Subsequently, ATI selects tags with data in the range
[0, τL] using A− commands (Line 8). Tags within [τL, τU]
are set to B, while tags with data beyond this range are set
to A. Further, ATI silences tags with data beyond the range
[τL, τU] using −B action based on maskG, the mask string
of the group vector (Line 10). Finally, ATI performs a query
command to inventory the tags with flag A, and adds any
replied tags to the anomalous tag set A (Line 12).

C. Performance Analysis

Now, we discuss the execution time of ATI. According to
Alg. 2, the time for identifying anomalous tags of each range
consists of three parts: select time, query time, and collect
time. The select time is the duration required for issuing select
commands, the query time is the time taken to issue a query

Algorithm 2: ATI of Each Range
Input: The boundaries τU and τL.
Output: The anomalous tag set A.

1 maskU = getMasks(τU);
2 maskL = getMasks(τL);
3 Flag← BA : S(2, 4, 3, p′, lenU1 ,maskU1);
4 for (i = 2; sizeof(maskU); i++) do
5 Flag← B− : S(2, 5, 3, p′, lenUi ,maskUi);
6 end
7 for (i = 1; sizeof(maskL); i++) do
8 Flag← A− : S(2, 1, 3, p′, lenLi

,maskLi);
9 end

10 Flag← −B : S(2, 2, 3, pG, lenG,maskG);
11 Query← A : Q(0, 2, 0);
12 if there is a reply then
13 Add tags to A;
14 return A;
15 else
16 return no;
17 end

command together with an inventory frame, and the collect
time refers to the time to collect the IDs of the tags that replied
to the query command. Based on Alg. 1, the number of selects
for τ , denoted as f ′(τ), depends on d′(τ) and the digits of τ .

f ′(τ) =

lτ−d′(τ)∑
i=1

sd(i), (12)

where sd(i) is the number of selects of the ith digit of τ ,
which is shown in Tab. II. Consequently, the execution time
for processing a range Di = [li, ui] can be calculated as:

T (Di) = (f ′(li) + f ′(ui) + 1)× ts + tq + nai × tid, (13)

where ts is the time interval of issuing a select command by
the reader, tq is the time interval of a query command together
with an inventory frame, tid signifies the time to collect the
IDs of the tags that responded to the query command (i.e.,
the abnormal tags), and nai indicates the number of abnormal
tags in the i-th group. The total execution time for identifying
all abnormal tags in m ranges can be calculated as:

T =

m∑
j=1

{(lui
−d′(ui)∑
i=1

sd(i) +

lli−d′(li)∑
i=1

sd(i) + 1
)
×ts+tq+nai

×tid
}
.

(14)

D. Identification after Detection

ATI returns IDs for anomalous tags, facilitating anoma-
lous object identification. However, collecting IDs is time-
consuming when there are many anomalous tags of one range,
leading to delays in detecting anomalies in other ranges. To
address this, we can first detect anomalies in the ranges of
interest and then identify the anomalous tags. During detec-
tion, the reader collects the ID of just one tag after issuing the

Algorithm 3: Enhanced ATI of Each Range
Input: The boundaries τU and τL.
Output: The anomalous tag set A.

1 maskU = getMasks(τU);
2 maskL = getMasks(τL);
3 Flag← BA :
S(2, 4, 3, p′, lenU1 + lenG,maskG+maskU1);

4 for (i = 2; sizeof(maskU); i++) do
5 Flag← B− :

S(2, 5, 3, p′, lenUi
+ lenG,maskG+maskUi);

6 end
7 for (i = 1; sizeof(maskL); i++) do
8 Flag← A− :

S(2, 1, 3, p′, lenLi
+ lenG,maskG+maskLi);

9 end
10 Query← B : Q(0, 2, 1);
11 if there is a reply then
12 Add tags to A;
13 return A;
14 else
15 return no;
16 end

query. If a reply is received, it indicates anomalies in the range;
otherwise, the range is considered normal. Subsequently, the
reader focuses on collecting IDs of anomalous tags associated
with the identified anomalous ranges. Consider an anomalous
range. In some extreme scenarios, where most of the tags in an
anomalous range are affected by the surrounding environment,
we can identify anomalous tags by collecting IDs of the normal
tags and considering the remaining tags as anomalous. To
select normal tags within a range, we replace the action −B
with −A in line 10 of Alg. 2. This sets all normal tags in Γi to
state B, while the other tags remain in state A. Subsequently,
we issue a query command to inventory the tags with flag B.
However, this approach requires additional select commands
for each range, which is not optimal. Instead, we can construct
a new mask by combining the current group string mask
maskG with the maski and use it to select normal tags. For
the first mask, the modified Select command becomes:

Flag← BA : S(2, 4, 3, p′, lenG + len1,maskG+mask1).
(15)

The modified algorithm is shown in Alg. 3. In comparison to
Alg. 2, the new mask string is maskG + maski (shown in
Lines 3, 5, and 8). Furthermore, in line 10, the query command
is modified to read the tags with flag B, making it Q(0, 2, 1).
This modification removes the need for an additional select
command to silence tags from other ranges. As a result,
selecting normal tags within a range is now achieved with
one less select command, leading to improved time efficiency
by reducing the total number of select commands by m.

PC

Tags

Reader

Antenna

ALR-F800

Alien 9662
Alien 9440

Higgs9

Fig. 3. Experimental setup.
IV. EVALUATION

A. Experimental Setup

As shown in Fig. 3, we evaluate our protocols using the
Alien ALR-F800 commodity RFID reader, an Enterprise class
reader capable of bit-level masking, which is essential for our
protocol. The bit-level mask conforms to C1G2 specifications;
the disability of other commodity readers might be due to
they support certain functions internally while not exposing
these detailed functionalities to users. The reader is connected
to a directional antenna that is with 9 dBic gain, operating
at around 920 MHz. In the experiments, we deploy 100 to
500 commodity tags (Alien 9662 and Alien 9440 with Higgs9
chipset) to evaluate the protocols’ performance.

We program all tags by writing the corresponding data into
them in advance. This includes writing normal tags with data
within their normal range and anomalous tags with data be-
yond their normal range. The programming process is achieved
using the Write command, specified by C1G2. The Write
command comprises three fields: MemBank, WordPtr, and
Data. MemBank determines the memory bank to be written,
commonly set to MemBank-3 (see Section III-A). WordPtr
specifies the word-level address for the memory write, where
each word is 16 bits long. Data contains the user information
to be written. Using this command, commercial readers can
write specific information into the memory of RFID tags.

B. Time and Space Efficiency of Encoding

In this subsection, we evaluate the number of selects and
the length of encoding vector of our protocols via simulations.
We study the number of selects for LS (US is the same as LS
and LUS can get similar conclusion). In Fig. 4, we vary the
size of τ from 1 × 10, 000 to 20 × 10, 000 at the step of
1000, i.e., τ = 10, 000, 11, 000, . . . , 20, 000. We compare the
average number of selects in interval [1, τ] with RQ and EnRQ,
respectively. As we can see, the number of selects of ATI,
RQ and EnRQ all experience rise as τ increases because the
probability of non-zero bits in their encoding vectors increases
as τ increases. The average number of selects for ATI is only
one select more than EnRQ10. Moreover, RQ requires more
selects than both ATI and EnRQ.

In Fig. 5, we study the length of encoding vector of ATI,
RQ, and EnRQ with respect to τ , where the values are the
same as in Fig. 4. It is evident that the length of the encoding
vector of ATI is close to RQ and EnRQ4, and much shorter
than EnRQ16 and EnRQ10. The length of the encoding vector

0 5 10 15 20

 (10,000)

1
2
3
4
5
6
7
8
9

10

A
v
er

ag
e

n
u
m

b
er

 o
f

se
le

ct
s

ATI RQ EnRQ4

EnRQ10 EnRQ16

Fig. 4. Average number of selects.

0 5 10 15 20

 (10,000)

0
10
20
30
40
50
60
70
80

L
en

g
th

 o
f

v
ec

to
r

ATI RQ EnRQ4

EnRQ10 EnRQ16

Fig. 5. Encoding length.

0 5 10 15 20

 (10,000)

10

20

30

40

50

T
im

e-
sp

ac
e

p
er

fo
rm

an
ce

ATD RQ EnRQ4

EnRQ10 EnRQ16

Fig. 6. Time-space efficiency.

1 2 3 4 5

Scenarios

0

2

4

6

8

10

12

T
im

e
 (

s)

ATI

RQ

EnRQ

(a)

1 2 3 4 5

Range number

200

300

400

500

600

T
im

e
(m

s)

ATI RQ EnRQ

(b)

10 15 20 25 30

Number of ranges

0

3

6

9

12

15

T
im

e
(s

)

ATI RQ EnRQ

(c)

100 200 300 400 500

Number of tags

0

2

4

6

8

10

T
im

e
(s

)

ATI RQ EnRQ

(d)

0.1 0.2 0.3 0.4 0.5

Anomalous range ratio

0

2

4

6

8

10

T
im

e
(s

)

ATI RQ EnRQ

(e)

0.16 0.3 0.5 0.7 0.8

Anomalous tag ratio

0

2

4

6

8

10

T
im

e
(s

)

ATI RQ EnRQ

(f)

Fig. 7. Comparison of time efficiency.
of RQ is similar to ATI’s, but the number of selects for RQ is
approximately double that of ATI’s, which is consistent with
the results in Fig. 4. Furthermore, although ATI requires one
more select on average than EnRQ10, its encoding vector’s
length is less than half of EnRQ10’s.

To provide a more intuitive view of the time-space efficiency
of all protocols, we devise an evaluation metric as:

Pts = α× w1× nselects + w2× Lvector, (16)

where w1 and w2 are the weights of the number of selects and
the encoding length, respectively, both set to 0.5. We set α = 5
to balance the order of magnitude based on the analysis from
Fig. 4 and Fig. 5. From Fig. 6, it is evident that ATI achieves
a favorable trade-off between the number of selects and the
length of the encoding vector, which corresponds to time and
space efficiency. For example, when τ = 20, 000, the metric
of ATI is 18.3, RQ is 24.5, and EnRQ16 is 39.2.

C. Time Efficiency

We now study the execution time of ATI in a commodity
RFID system. We adapt RQ [20] and EnRQ [21] to support
multi-range queries, and take them as the baselines for com-
parison. For EnRQ, we use EnRQ16 as the baseline, as it is the
most time-efficient compared to EnRQ10 and EnRQ4. In each
experiment, we randomly choose 2m numbers between 1 and

10,000 as boundaries for m ranges. This allows us to cover
a wide range of real-life situations, as the difference between
the upper and lower limits of a given data range is generally
not significantly large. Afterward, we get the execution time
of ATI, RQ, and EnRQ by averaging the results of 20 runs.

In Fig. 7(a), we compare the execution time of ATI, RQ,
and EnRQ across five scenarios. In scenario 1, we set m = 5,
n = 100, pm = 0.4, pn = 0.1. Here, m is the number
of ranges, n is the number of tags, pm is the ratio of the
number of anomalous ranges containing anomalous tags to
the total number of ranges, and pn is the ratio of the number
of anomalous tags in each anomalous range to the total
number of tags in that range. Scenario 2, same parameters as
scenario 1, but tags are programmed with data having trailing
zero boundaries (1000 to 10,000). Other experiments use 2m
randomly chosen boundaries. In scenario 3, we double m and
n, which maintains the number of tags in each range, and
set pm = 0.2, pn = 0.2. In scenario 4, we deploy more
tags, i.e., n = 300, m = 20, pm = 0.1, while keeping the
number of anomalous ranges, and set pn = 0.2. In scenario
5, we double pm and pn. To examine the execution time of
all protocols, we take a closer look at scenarios 2 and 5.
Compared to scenario 1, in scenario 2, the execution time
of ATI decreases for it requires fewer selects for its encoding
vector is tailored for the trailing zero boundaries. In scenario 5,

the modified RQ and EnRQ take 10.32s and 7.89s to conduct
the multiple range detection, respectively. Our protocol, ATI,
reduces the time to 5.78s by leveraging the fixed-encoding
and grouping method, which is 44.1% and 26.7% faster than
RQ and EnRQ, respectively. Similar conclusions hold true for
the other three scenarios, demonstrating the superiority of ATI
over the baselines in terms of time efficiency.

In Fig. 7(b), we illustrate the average time of all protocols
to identify each range in scenario 1. ATI requires more time
to identify the first and second anomalous ranges compared
to the other three normal ranges. The fluctuation is due to
the varying number of selects required for different ranges.
RQ and EnRQ show consistent times for each range, as they
collect all normal tags within each range.

Now, we study the impact of the number of ranges, number
of tags, anomalous range ratio, and anomalous tag ratio on
the execution time of our protocols and the baseline. In Fig.
7(c), we study the effect of the number m of ranges on the
execution time. With n = 300, pm = 0.1, and pn = 0.2, we
vary m from 10 to 30 with a step of 5. The execution time
of ATI, RQ, and EnRQ increases as m increases since each is
processed separately. RQ and EnRQ show slower growth due
to reduced tags per range; ATI exhibits roughly linear growth.

In Fig. 7(d), we study the execution time of ATI, RQ, and
EnRQ with respect to the number n of tags. Keeping m = 10,
am = 2, and an = 2 fixed, we vary n from 100 to 500
with a step of 100; where am is the number of anomalous
ranges and an is the number of anomalous tags in each range.
The baseline protocols show increasing execution time with
more tags, while our protocols remain stable. That is because,
with the given values of m, am = 2, and an = 2, the
number of normal tags increases as n increases. RQ and EnRQ
collect all normal tags in each range, leading to an increase
in execution time. In contrast, ATI only collects anomalous
tags, maintaining a stable execution time with fixed numbers
of anomalous ranges and tags in each range.

In Fig. 7(e), we show how the anomalous range ratio pm
influences the execution time. We fix m = 10, n = 300,
pn = 0.2 and vary pm from 0.1 to 0.5 with a step of 0.1. The
execution time of RQ and EnRQ decreases with the anomalous
range ratio, while our protocols exhibit an increasing trend
as the anomalous range ratio rises. The reason is that our
protocol requires more time to collect more anomalous tags
as pm increases, while the baseline collect fewer normal tags.

Fig. 7(f) shows how the execution time is affected by the
anomalous tag ratio pn. With m = 10, n = 300, and pm = 0.1
fixed, we vary an from 5 to 25 (step of 5), resulting in
pn ranging from approximately 0.16 to 0.8. The execution
time of RQ and EnRQ decreases due to fewer normal tags
collected in anomalous groups, while the execution time of
ATI increases with pn as more anomalous tags are collected.
It consistently outperforms the baselines in terms of time
efficiency, especially when pn is small. For example, when
pn is 0.16, the time of RQ and EnRQ is 7.75s and 6.77s,
respectively; while ATI takes only 2.9s, representing a 1.33×
increase compared to EnRQ.

V. RELATED WORK

Multi-range query is to identify tags with data beyond their
normal data range. The basic solution is to collect all tags’
information and check whether their data falls within their
expected range. In recent years, many advanced protocols have
been developed to enhance the time efficiency of informa-
tion collection [22]–[25], [27]. Chen et al. [23] maximize
the useful single slot by using multiple hash functions to
reconcile the collision slots. Qiao et al. [27] introduce a
tag-ordering polling protocol with partitioned Bloom filters,
which effectively reduces energy consumption at a minimal
cost to time efficiency. Xie et al. [25] design a data structure
called Minimal Perfect Hashing based Filter (MPHF) to filter
out the irrelevant tags and avoid the interference with the
target tags. Liu et al. [22] propose an incremental polling
protocol (IPP) that drops the polling vector to just 1.6 bits
long. These methods provide viable solutions for multi-range
query, but they have limitations: collecting all tags can be time-
consuming, especially when the number of anomalous tags is
small compared to the total tags; they are not compatible with
the EPCglobal Class1 Gen2 (C1G2) standard, making them
unsuitable for commodity RFID systems.

The range query (RQ) approaches [20], [21] check whether
there are any tags with data between a lower and upper
boundary and are compatible with C1G2. They perform well
in single-range scenarios by dividing tags into anomalous and
normal sets and then querying the anomalous set to identify
the anomalous tags. However, in multi-range scenarios, the
anomalous set may include anomalous and normal tags from
different ranges, leading to false alarms even when there are
no anomalies in the targeted range.

VI. CONCLUSION

This paper focuses on multi-range query in a commodity
RFID system, which aims to identify tags with data beyond
their expected data range. We design one tailored solution
called anomalous tag identification (ATI). In ATI, we build
a fixed-length encoding vector to incorporate grouping infor-
mation, effectively separating anomalous tags associated with
a range from tags of other ranges. Extensive experimental
results demonstrate that our protocol ATI improves the time
efficiency of anomalous tag identification when compared with
the baselines under different parameters.

ACKNOWLEDGMENT

This research is financially supported by the Funda-
mental Research Funds for the Central Universities (Nos.
B240201062 and B240201064), the National Natural Science
Foundation of China (Nos. 62102079, 62332013, 62180005,
and 62306104), the Natural Science Foundation of Jiangsu
Province under Grant (No. BK20230949), Hong Kong Schol-
ars Program (No. XJ2024010), Research Grants Council of
the Hong Kong Special Administrative Region, China (GRF
Project No. CityU11212524), and the Collaborative Innovation
Center of Novel Software Technology and Industrialization.

REFERENCES

[1] J. Zhang, X. Liu, S. Chen, X. Tong, Z. Deng, T. Gu, and K. Li, “Toward
robust RFID localization via mobile robot,” IEEE/ACM Transactions on
Networking, vol. 32, no. 4, pp. 2904 – 2919, 2024.

[2] J. Liu, F. Zhu, Y. Wang, X. Wang, Q. Pan, and L. Chen, “Rf-scanner:
Shelf scanning with robot-assisted RFID systems,” in Proc. of IEEE
INFOCOM, 2017, pp. 1–9.

[3] V. C. Maia, K. M. de Oliveira, C. Kolski, and G. H. Travassos, “Using
RFID in the engineering of interactive software systems: A systematic
mapping,” in Proc. of ACM HCI, 2023, pp. 1–37.

[4] S. Zhang, Z. Ma, K. Lu, X. Liu, J. Liu, S. Guo, A. Y. Zomaya, J. Zhang,
and J. Wang, “Hearme: Accurate and real-time lip reading based on
commercial RFID devices,” IEEE Transactions on Mobile Computing,
vol. 22, no. 12, pp. 7266–7278, 2022.

[5] Y. Bu, L. Xie, Y. Gong, C. Wang, L. Yang, J. Liu, and S. Lu, “Rf-dial:
An RFID-based 2d human-computer interaction via tag array,” in Proc.
of IEEE INFOCOM, 2018, pp. 837–845.

[6] J. Liu, X. Chen, S. Chen, X. Liu, Y. Wang, and L. Chen, “TagSheet:
Sleeping Posture Recognition with an Unobtrusive Passive Tag Matrix,”
in Proc. of IEEE INFOCOM, 2019, pp. 874–882.

[7] Y. Wang and Y. Zheng, “TagBreathe: Monitor Breathing with Commod-
ity RFID Systems,” IEEE Transactions on Mobile Computing, vol. 19,
no. 4, pp. 969–981, 2020.

[8] X. Liu, B. Zhang, S. Chen, X. Xie, X. Tong, T. Gu, and K. Li, “A
wireless signal correlation learning framework for accurate and robust
multi-modal sensing,” IEEE Journal on Selected Areas in Communica-
tions, vol. 42, no. 9, pp. 2424 – 2439, 2024.

[9] W. Gong, H. Wang, S. Li, and S. Chen, “Glac: High-precision tracking
of mobile objects with cots RFID systems,” IEEE/ACM Transactions on
Networking, vol. 32, no. 3, pp. 2331 – 2343, 2024.

[10] B. Liang, P. Wang, R. Zhao, H. Guo, P. Zhang, J. Guo, S. Zhu, H. H. Liu,
X. Zhang, and C. Xu, “Rf-chord: Towards deployable RFID localization
system for logistic networks,” in Proc. of USENIX NSDI, 2023, pp.
1783–1799.

[11] X. Liu, B. Zhang, L. Wang, S. Chen, X. Xie, X. Tong, T. Gu, and
K. Li, “Fine-grained recognition of manipulation activities on objects via
multi-modal sensing,” IEEE Transactions on Mobile Computing, vol. 23,
no. 10, pp. 9614 – 9628, 2024.

[12] J. Liu, S. Chen, M. Chen, Q. Xiao, and L. Chen, “Pose sensing with
a single RFID tag,” IEEE/ACM Transactions on Networking, vol. 28,
no. 5, pp. 2023–2036, 2020.

[13] S. Li, S. Li, M. Chen, C. Song, and L. Lu, “Frequency scaling meets
intermittency: Optimizing task rate for RFID-scale computing devices,”

IEEE Transactions on Mobile Computing, vol. 23, no. 2, pp. 1689–1700,
2023.

[14] X. Liu, Y. Huang, Z. Xi, J. Luo, and S. Zhang, “An efficient RFID tag
search protocol based on historical information reasoning for intelligent
farm management,” ACM Transactions on Sensor Networks, 2023.

[15] J. Su, Z. Sheng, C. Huang, G. Li, A. X. Liu, and Z. Fu, “Identifying
rfid tags in collisions,” IEEE/ACM Transactions on Networking, vol. 31,
no. 4, pp. 1507–1520, 2022.

[16] K. Liu, L. Chen, J. Yu, and H. Cui, “On batch writing in cots rfid
systems,” IEEE Transactions on Mobile Computing, vol. 23, no. 5, pp.
3846–3857, 2023.

[17] X. Liu, J. Cao, Y. Yang, W. Qu, X. Zhao, K. Li, and D. Yao,
“Fast RFID sensory data collection: Trade-off between computation and
communication costs,” IEEE/ACM Transactions on Networking, vol. 27,
no. 3, pp. 1179–1191, 2019.

[18] J. Wang, O. Abari, and S. Keshav, “Challenge: RFID hacking for fun
and profit,” in Proc. of ACM MobiCom, 2018, pp. 461–470.

[19] Y. Bu, L. Xie, Y. Gong, J. Liu, B. He, J. Cao, B. Ye, and S. Lu,
“Rf-3dscan: RFID-based 3d reconstruction on tagged packages,” IEEE
Transactions on Mobile Computing, vol. 20, no. 2, pp. 722–738, 2021.

[20] J. Liu, X. Yu, X. Liu, X. Chen, H. Liu, Y. Wang, and L. Chen, “Time-
efficient range detection in commodity RFID systems,” IEEE/ACM
Transactions on Networking, vol. 30, no. 3, pp. 1118–1131, 2022.

[21] X. Yu, J. Liu, S. Zhang, X. Chen, X. Zhang, and L. Chen, “Encoding-
based range detection in commodity RFID systems,” in Proc. of IEEE
INFOCOM. IEEE, 2022, pp. 680–689.

[22] J. Liu, B. Xiao, X. Liu, K. Bu, L. Chen, and C. Nie, “Efficient polling-
based information collection in RFID systems,” IEEE/ACM Transactions
on Networking, vol. 27, no. 3, pp. 948–961, 2019.

[23] S. Chen, M. Zhang, and B. Xiao, “Efficient information collection
protocols for sensor-augmented RFID networks,” in Proc. of IEEE
INFOCOM, 2011, pp. 3101–3109.

[24] Y. Qiao, S. Chen, T. Li, and S. Chen, “Tag-Ordering Polling Protocols
in RFID Systems,” IEEE/ACM Transactions on Networking, vol. 24, pp.
1548–1561, 2016.

[25] X. Xie, X. Liu, K. Li, B. Xiao, and H. Qi, “Minimal Perfect Hashing-
Based Information Collection Protocol for RFID Systems,” IEEE Trans-
actions on Mobile Computing, vol. 16, no. 10, pp. 2792–2805, 2017.

[26] “EPC radio-frequency identity protocols generation-2 UHF RFID
standard,” GS1, ISO/IEC 18000-63, Jul. 2024, https://www.gs1.org/
standards/epc-rfid/uhf-air-interface-protocol.

[27] Y. Qiao, S. Chen, T. Li, and S. Chen, “Energy-efficient polling protocols
in RFID systems,” in Proc. of ACM MobiHoc, 2011, pp. 1–9.

