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Abstract. Personalized Federated Learning (PFL) has gained signifi-
cant attention for its ability to handle heterogeneous data effectively.
Parameter decoupling is a typical approach to PFL. It decouples the
model into a feature extractor and a classifier head, where the feature
extractor is trained collaboratively to learn a common representation
and the classifier head is personalized for local data. Since local training
only learns personalized feature information and ignores global infor-
mation, the generalization ability of the feature extractor is limited. To
improve the performance of the local model, a feasible approach is to
make the local feature extractor more generalized. However, prior work
requires the transmission of additional feature data beyond the trans-
mission of model parameters, which leads to privacy leakage and higher
communication overhead. To address these shortcomings, we propose a
PFL algorithm with feature alignment via knowledge distillation, named
PFAKD. PFAKD enhances the training of local feature extractors by
explicitly aligning each sample’s local features with global features, pro-
viding more detailed guidance. Meanwhile, it avoids additional commu-
nication overhead and the risk of privacy leakage. We conduct extensive
experiments in heterogeneous data scenarios. PFAKD outperforms other
state-of-the-art methods by up to 4.35% in terms of model accuracy. Our
code is available at https://github.com/fei0829 /PFAKD.

Keywords: Personalized Federal Learning - Data Heterogeneity - Fea-
ture Alignment - Knowledge Distillation.

1 Introduction

In recent years, federated learning (FL) [8,13,14] has gained increasing atten-
tion due to the proliferation of mobile devices and advancements in edge com-
puting technologies. FL aims to develop a global model across multiple devices
by sharing only the model updates—gradients or parameters—without expos-
ing users’ private data. Despite its successes in enhancing data privacy and
security, FL faces several challenges, with data heterogeneity being one of the
most critical [9]. Data generated at the client side often leads to varied data
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distributions among participants, resulting in non-independent and identically
distributed (non-IID) data issues. Non-IID data in FL causes “client drift” [10],
where the local update direction deviates from the intended global update direc-
tion. This deviation can significantly slow down model convergence and degrade
overall performance [10,17]. Consequently, in the classical FL algorithm such as
FedAvg, local models may not be ideally suited for each individual client due to
the variance in global and local data distributions [22].
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Fig. 1. The training process of existing feature alignment work: (I) Download the
global feature extractor and the global features of each class (2) The client trains the
model using local data under the guidance of global features (3) Use the locally trained
feature extractor to extract local features for each class (4 Upload the local feature
extractor and the local features of each class (5) The server aggregates the local feature
extractors and local features of each class to obtain a new global feature extractor and
global features of each class.

To tackle the adverse effects of data heterogeneity, personalized federated
learning (PFL) [6, 15] has been proposed. PFL aims to improve local model
performance by creating personalized models for each client that align with
their specific data distribution. A key research direction in PFL is model decou-
pling [2,4,5,21], which splits the model into feature extractors and task-specific
classifiers. Feature extractors are co-trained by all clients to learn a common
representation, while classifiers are privately trained for local classification tasks.
However, local training of feature extractors often focuses solely on personalized
features, neglecting global features, which affects the aggregation effect of the
global model [18,21]. In addition, sharing feature extractors only from the pa-
rameter level is not sufficient to obtain common features from heterogeneous
data.

Some recent studies have been proposed to additionally learn global features
from the feature level besides the shared feature extractor. For example, Fed-
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PAC [18] aligns local features with the global feature centroids, and GPFL [21]
aligns them with the global category embeddings in order to introduce the global
feature information into the local training. However, these approaches require
additional communication of global feature data, as illustrated in Fig. 1, which
introduces privacy and communication overhead issues.

To simultaneously learn personalized and global features while avoiding addi-
tional data transmission, we propose a new PFL framework with feature align-
ment via knowledge distillation, called PFAKD. In this framework, only the
parameters of the feature extractor are communicated between the client and
the server to facilitate the learning of a common representation. Meanwhile, the
classifier head remains localized for personalized training. Clients enhance their
personalized models by learning global features from the global feature extractor
via distillation training, which aligns the local features of each sample with global
features. PFAKD provides finer-grained feature guidance, introducing compre-
hensive and rich global feature information for local feature extractors, thereby
reducing the diversity of feature extractors. Unlike strategies relying on global
feature centroids or category embeddings, PFAKD considers the unique features
of individual samples.

Our contributions are summarized as follows:

e We propose a novel PFL framework named PFAKD for feature information
transfer via knowledge distillation, which allows clients to learn both per-
sonalized and global feature information. Our framework can improve the
generalization ability of local feature extractors to some extent.

e PFAKD enables fine-grained feature alignment with only the parameters of
the feature extractor being communicated, reducing communication over-
head while maintaining model performance.

e Extensive experiments on various datasets and models demonstrate that
PFAKD consistently outperforms benchmark methods, improving average
model accuracy by up to 4.35%.

2 RELATED WORK

2.1 Data Heterogeneity in Federated Learning

Non-IID data is a key challenge in FL, which can significantly degrade the per-
formance of FL models. In order to mitigate the negative impact of non-IID
data on FL, related research works are divided into the following two main
categories: correcting local update direction and adjustment in the model aggre-
gation phase. Each of two strategies tries to optimize the training process from
different perspectives to improve the robustness of FL. with data heterogeneity.
Correcting local update direction. This type of method aims to correct the
updating direction of the local model so that the local optimization objective
and the global optimization objective are as consistent as possible. FedProx [12]
limits the discrepancy between the global and local models by introducing a reg-
ularization term in the local training. Scaffold [10] mitigates client drift induced
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by non-IID by introducing two control variables. FedNova [16] reduces the vari-
ability between client gradients by normalizing and scaling the local gradients.
MOON |[11] exploits the idea of contrast learning by using contrast loss to correct
for local training of clients. FedDyn [1] aligns the local optimization objective
with the global optimization objective by introducing a dynamic regularizer for
client training.

Adjustment in the model aggregation phase. This approach aims to im-
prove the aggregation phase of the model. FedDisco [19] utilizes the difference
between the client’s dataset size and local-global category distributions to deter-
mine more discriminative aggregation weights for each client, and [3] proposes
an elastic aggregation method that leverages the sensitivity of a parameter to
adjust the update magnitude of the parameter. Fed AvgM [7] improves on Fed Avg
by applying momentum to global model updates on the server.

2.2 Model Decoupling for Personalized Federated Learning

PFL has been proposed to address data heterogeneity in FL, with the core idea of
training personalized models for each client adapted to its data distribution. One
important direction is to decouple the model into a feature extractor (body) and
a classifier head (head). This method trains only one of them with other clients
to learn global information and the other part is used to privately learn local
personalized information. FedPer [2] divides the model into a base layer and a
personalized layer, with the base layer shared for training and the personalized
layer trained locally and privately. FedRep [5] divides the model into feature
extractors and classifier heads, where feature extractors are trained locally less
often than classifier heads. FedPAC [18] uses the global feature centroids to
guide the training of the local feature extractor and merge the classifier heads
of clients with similar data distributions to obtain a better personalized model.
GPFL [21] applies trainable global category embeddings to guide the training of
the local feature extractor with the help of the Conditional Valve to learn both
personalized and global information.

Although existing research has made some progress in dealing with data het-
erogeneity in federated learning, these works still suffer from some shortcomings.
These methods often fail to fully utilize the combination of global and local fea-
ture information, thus limiting the generalization ability of feature extractors
in diverse data environments. To address this problem, we propose a new per-
sonalized federated learning method, PFAKD, which achieves a more effective
integration of global and local features by using the outputs of the global feature
extractor to guide the training of the local feature extractor. PFAKD not only
improves the generalization ability of the feature extractor, but also enhances
the model’s adaptability to the specific local data distribution.

3 Method

In this section, we begin with a problem statement, then introduce local rep-
resentation learning and the motivation for our approach, and finally present
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our method PFAKD to achieve feature alignment for better personalized models
through knowledge distillation.

3.1 Problem Statement

We consider a PFL system that consists of n clients, its global optimization
objective is:

. Ly
min F(0): = -~ ZE(I,y)NDi [4:(05; 2, y)] (1)
i=1

where 8 = {61,0,,...,6,}. We denote the local model of the i-th client as 6;, the
local dataset of i-th client containing N, data points as D; = {(zk4, Yk, fV:’““l
which is randomly sampled from the local data distribution P;(x,y) in a data
heterogeneous environment, and the local loss function used to measure the loss
as ¢;. By minimizing the global loss function F'(), we can obtain a personalized
model for each client.

3.2 Local Representation Learning

We decouples the model into a feature extractor (¢) and a classifier head (x),
where x is the last fully-connected layer. fy is a function parametrized by ¢
that maps data points from the d-dimensional to the k-dimensional feature space
¢: R? — RF. fx is a function parametrized by x that maps k-dimensional
features to the label space ¢ : R¥ — y. Thus, the local loss function of a client
can be expressed as: £((¢, x) = £((¢) o £((x). We share the feature extractor
with other clients to learn a globally common feature representation, and the
classifier head is private to learn local personalized information. However, due
to the effect of non-IID data, local training of clients tends to make the feature
extractor overfit the local feature representation, which results in a diversity of
feature extractors across clients. Therefore, the global feature extractor is not
applicable to individual clients.

3.3 Motivation

Under non-IID scenarios, there are significant differences between client data
distributions, and local data distributions are not representative of global data
distributions. Global feature extractors are able to extract better feature repre-
sentations than feature extractors trained on a skewed subset of clients. There-
fore, one of our motivations is to use the global features extracted by the global
feature extractor to guide the training of the local feature extractor. Knowledge
distillation is a powerful knowledge transfer method that enables knowledge
transfer between two models. In order to make the local feature extractor learn
both global features and local personalized feature information, we propose to
use knowledge distillation in order to further transfer the knowledge from the
global feature extractor to the local feature extractor, which improves the gen-
eralization ability of the local feature extractor without introducing additional
communication overhead.
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Fig. 2. The PFAKD training process: () Download global feature extractor (2) Client
distillation training using local data () Upload local feature extractor (4) Server ag-
gregates

local feature extractor to get global feature extractor

3.4 PFAKD

Our core goal is to transfer global feature information to local feature extractors
through knowledge distillation. The features obtained from the global feature
extractor are more generalized, and using them to supervise the training of
the local feature extractor can be efficient in limiting the diversity of the local
feature extractor parameters. Since the global features come from the global
model, the client does not need to communicate additional feature information
with the server, which reduces the risk of privacy leakage and further reduces
communication overheads.

PFAKD performs local distillation through a linear combination of local em-
pirical risk loss and distillation loss:

0(0:) = £5°(0.) + 5 £() )
where: s
@) = = 3 Foulom) — Folen) 3)
P m=1

where £ is the client-side local cross-entropy loss, Ef is the distillation loss, here
we use mean squared error MSE for distillation loss, n; is the number of data
samples, fo, (Tm) is the local feature obtained by the data sample z,, on client i
through the local feature extraction layer ¢; , and fg(x.,) is the global feature
obtained by the data sample x,, through the global feature extraction layer ¢. 3
is a hyperparameter balancing the local cross-entropy loss £5¢ and distillation loss
E‘ii to control the extent of knowledge transfer from the global feature extractor
to the local feature extractor. By minimizing the local loss £;, the client can use
local data to learn personalized heads, and also explicitly align local features
with global features, and the local feature extractor can learn both local and
global feature information to reduce the diversity of the local feature extractor
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Algorithm 1 PFAKD

1: Input: n: number of clients; n: local learning rate; 3: hyperparameters; T": global
rounds; E: local epoch; B: number of batch

2: Initialize ¢°, x3, x93, .., x2_1

3: fort=0,1,...,7T—1do

4: Server samples clients Sy

5: sends (;St to S

6: for each client k € S; in parallel do

T Update local feature extractor: f;l — ¢t
8: for local stepse=0,...,F—1 do

9: for batches j =0,...,B—1do

10: ¢I(Ct,y+1) ya ¢1(:J) _ 77V¢§:yj)ei

11: Xp Y e (- UANLS

12: end for *

13: end for

14: end for

15: Upload ¢, to server

16: Server Aggregation: ¢(‘t1) = @ ZiESt o)

17: end for

18: Output: Personalized model parameters {6;,...,0,}

and promote the global aggregation of the feature extractor. We describe the
algorithmic flow and training process of PFAKD in detail in Algorithm 1 and
Fig. 2 respectively.

4 Experiments

4.1 Experimental Setup

Datasets and models. We evaluate our method on three commonly used im-
age classification datasets Fashion-MNIST, CIFAR10, and CIFAR100. Fashion-
MNIST is an image dataset with 10 clothing categories, CIFAR10 is an image
dataset with 10 natural scene categories covering a wide range of everyday ob-
jects, and CIFAR100 is a more challenging image dataset with 100 categories
covering a wider range of objects and scenes. For Fashion-MNIST and CIFARI10,
we build a 5-layer CNN model with three convolutional layers and two fully con-
nected layers, and for CIFAR100, we use a ResNet18 model.

Statistically heterogeneous settings. We use the Dirichlet distribution [20]
to divide non-IID datasets, which is used to simulate the heterogeneity of data
distribution in the real world. Different levels of heterogeneity can be achieved by
adjusting the parameter a. The larger « is, the lower the degree of heterogeneity,
and the smaller « is, the greater the degree of heterogeneity. For all methods,
we used the Dirichlet distribution Dir(a) with oo = 0.5 to randomly sample data
from Fashion-MNIST, CIFAR10, and CIFAR100 and divide it across clients. For
all datasets, we used 75 % of the data as the training set and 25% of the data as



8 G. Qi et al.

the test set, with the training and test sets on each client having the same data
distribution.

Table 1. Averaged Test Accuracy (%) of different FL methods on Fashion-MNIST,
CIFARI10 and CIFAR100 with participation rate r=1.

Method Fashion-MNIST CIFARI10 CIFARI100
Local epoch 5 10 20 5 10 20 5 10 20
Local 93.43 68.70 39.26

FedAvg 90.14 90.12 89.81 | 64.85 64.05 62.72 | 34.59 32.54 26.12
FedPer 94.24 94.17 94.00 | 73.99 72.98 72.78 | 46.74 45.26 43.22
FedRep 91.90 93.48 93.57 | 69.00 75.37 74.30 | 41.04 37.13 34.31
FedPAC | 94.77 94.72 94.26 | 75.91 75.58 74.69 | 47.29 45.37 45.58

GPFL 94.04 93.61 9292 | 70.09 71.76 70.59 | 40.85 36.74 35.61
PFAKD |94.95 94.99 94.85|76.12 76.50 76.15|48.61 48.10 49.94

Table 2. Averaged Test Accuracy (%) of different FL methods on Fashion-MNIST,
CIFAR10 and CIFAR100 with participation rate r=1.

Method Fashion-MNIST CIFAR10 CIFAR100
Local epoch 5 10 20 5 10 20 5 10 20
PFAKD 94.93 9498 94.89 | 76.02 76.25 76.05 | 47.86 48.07 49.71
PFAKD + AT | 94.97 94.98 95.02|76.30 76.74 76.92 | 48.27 48.31 50.10

Baselines. We compare our proposed PFAKD with the following baselines: Fe-
dAvg [13]: train a single global model to be applied to all clients; Local: each
client only uses local data to train local models, no collaborative training with
other clients; FedPer [2]: decoupling the model into a base layer and a person-
alization layer, with the base layer shared and the personalization layer private;
FedRep [5]: decoupling the model into a feature extractor and a classifier head,
with the feature extraction layer shared and the classifier layer private, with the
feature extractor and classifier head trained separately locally, with the feature
extractor trained locally in fewer rounds compared to the classifier head; Fed-
PAC [18]: align local features with the global feature centroids and use the global
feature centroids to guide the training of the local feature extractor; GPFL [21]:
by training global category embeddings for each class, the local features are
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aligned with the global category embeddings, and the global category embed-
ding layer is used to guide the training of the local feature extractor.
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Fig. 3. Accuracy Curves for Different Methods at Fashion-MNIST, CIFAR10, CI-
FAR100, and (local epochs)E=10 or E=20.

Training Settings. For all methods, we set the learning rate to 0.01, the batch
size to 128, the number of clients to 10, all using the SGD optimizer with mo-
mentum set to 0.9, weight decay set to be-4, and local epochs set to 5, 10 and 20,
respectively. For Fashion-MNIST, the number of global communication rounds
is set to 50 when the local epoch is 5 or 10, and 30 when the local epoch is 20.
For CIFARI10, the number of global communication rounds is set to 100 when
the local epoch is 5 or 10, and 20 when the local epoch is 100. For CIFAR100,
the number of global communication rounds is set to 40 when the local epoch
is 5 or 10, and to 20 when the local epoch is 20. we compute the average test
accuracy of the last ten communication rounds across all clients as the final test
accuracy of the model.

Hyper-parameter Settings. For all methods, we use a grid search to find the
optimal hyperparameters. For PFAKD, we tune 8 over {0.1, 0.5, 1, 5, 10} and
set to 1. For FedPAC, we tune X over {0.001, 0.01, 0.1, 1, 5, 10}, set A to 1 when
using Fashion-MNIST and CIFAR10, and set A to 0.001 when using CIFAR100.
For GPFL, we tune A and u over {0, 1075, 10~%, 1073, 1072, 107, 1, 10}, when
using Fashion-MNIST and CIFARI10, set A and g to 1072, 10!, respectively,
and when using CIFAR100, set A and x to 1074, 107!, respectively.
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4.2 Experimental Results

Performance Comparison. The experimental results of all methods in the
case of non-IID are shown in Table ??7. In the Fashion-MNIST dataset and with
local epoch of 5, 10, and 20, our method outperforms the best baseline by 0.18%,
0.27%, and 0.59%, respectively. In the CIFAR10 dataset and with local epoch of
5, 10, and 20, our method outperforms the best baseline by 0.21%, 0.92%, and
1.46%, respectively. In the CIFAR100 dataset and with local epoch of 5, 10, and
20, our method outperforms the best baseline by 1.32%, 2.73%, and 4.35%,
respectively.

Ablation Studies. We have two key design components in PFAKD, i.e., feature
extractor sharing(FS) and knowledge distillation(KD). As demonstrated in Table
3, (“w/0” is short for “without”) "w/o FS" indicates that neither FS nor KD is
used, meaning only local training methods are applied. "w/o KD" refers to the
training method that uses a shared feature extractor. "Both" involves feature
alignment through knowledge distillation based on the shared feature extractor.
Our ablation experiment results are obtained from the experimental results in
Table ??, corresponding to the three methods of Local, FedPer and PFAKD
respectively. Experimental results indicate that both approaches contribute to
an improvement in average test accuracy. Moreover, the combination of both
methods achieves the most satisfactory model performance. This suggests that
our proposed approach can build a better global feature extractor and a more
suitable personalized classifier.

Table 3. Ablation study. "w/o FS" means local training only, "w/0 KD" denotes
feature extractor sharing , while "Both" means F'S and KD are applied simultaneously.

Dataset w/o FS | w/0o KD | Both
Fashion-MNIST | 93.43 94.17 94.99
CIFAR10 68.70 72.98 | 76.50
CIFAR100 39.26 45.26 48.10

Reason of PFAKD outperforms other baselines. (1) PFAKD v.s. Local
& FedAvg: In scenarios where client nodes only participate in local training,
they are limited to acquiring localized feature information, resulting in poor
generalizability of the feature extractor. The FedAvg algorithm trains an iden-
tical model across all client nodes. However, in the presence of significant data
heterogeneity, this model is often unsuitable for the local data distributions of
individual clients. In contrast, the PFAKD approach not only facilitates the
learning of a feature extractor with enhanced generalizability but also supports
the development of personalized classifier heads that are tailored to the specific
local data distributions of the clients. (2) PFAKD v.s. FedPer & FedRep:
In FedPer and FedRep, the feature extractors trained on each client learn per-
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sonalized feature information. In contrast, PFAKD locally learns both global
and personalized feature information. (3) PFAKD v.s. FedPAC & GPFL:
FedPAC/GPFL uses global feature centroid/global category embedding for each
class to guide the training of feature extractors, but category-level features pos-
sess less global information. In contrast, PFAKD uses global feature information
at the sample level to guide the training of the feature extractor, and features
at the sample level have more global information.

More Local Epochs. The above experimental results show the superiority of
our method for different rounds of iterations, and our method is more suitable
for the case of the high number of local epochs. We show the test accuracy curves
for the various methods for the three datasets at (local epochs)E=10, E = 20
in Fig. 3. To reduce communication overhead in FL, clients tend to increase
the number of local iterations to reduce the number of communications and
speed up convergence, but this tends to sacrifice the final accuracy of the model.
From our experimental results, it can be seen that most of the algorithms show
performance degradation as the local epoch increases (FedRep shows an increase
in performance with the increase of local epoch on some datasets due to the low
period of body training), whereas the performance of our method, PFAKD,
shows very little or almost no degradation. The reason for this phenomenon
is the more fine-grained feature guidance of PFAKD, which aligns the global
and local features of each sample through knowledge distillation to introduce
richer and more comprehensive global feature information to the local feature
extractor, thereby improving the model’s generalization and resulting in higher
accuracy on the test set.

5 Conclusion

In this paper, we propose a new algorithm named PFAKD for PFL, designed
to tackle the issue of data diversity within the FL framework. The core idea
of PFAKD is achieving fine-grained feature alignment through a knowledge
distillation-based approach. PFAKD enables the co-training of feature extrac-
tors and personalization of classifier heads by decoupling the models, allowing
each client to optimize the model for its local data without sacrificing privacy
and increasing the communication burden. Our experimental results show that
PFAKD outperforms state-of-the-art methods in terms of the average testing
accuracy of the model when dealing with heterogeneous data.
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