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Abstract

Oblique Decision Tree (ODT) partitions the feature space using linear combinations of
features, in contrast to a conventional Decision Tree (DT) which is restricted to axis-
parallel splits. ODT has been proven to have a stronger representation ability than DT, as it
provides a way to create shallower tree structures while still approximating complex decision
boundaries. However, its learning efficiency is still insufficient, since the linear projections
cannot be transmitted to the child nodes, resulting in a waste of model parameters. In this
work, we propose an enhanced ODT method with Feature Concatenation (FC-0DT), which
enables in-model feature transformation to transmit the projections along the decision
paths. Theoretically, we prove that our method enjoys a faster consistency rate w.r.t. the
tree depth, indicating that our method possesses a significant advantage in generalization
performance, especially for shallow trees. Experiments show that FC-0DT outperforms the
other decision trees with a limited tree depth.

Keywords: oblique decision tree, feature concatenation, learning theory

1 Introduction

Ensemble learning architectures employing decision trees, notably Random Forests (Breiman,
2001; Geurts et al., 2006) and Gradient Boosted Decision Trees (Friedman, 2001; Chen and
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Guestrin, 2016; Ke et al., 2017), have become prevalent solutions for high-dimensional
regression/classification problems with inherent ill-posedness (Vershynin, 2018). Their ef-
ficacy extends to diverse domains, including causal effect estimation (Wager and Athey,
2018; Doubleday et al., 2022), temporal sequence analysis (Kane et al., 2014), signal re-
construction (Pal, 2005), and computer vision applications (Payet and Todorovic, 2012;
Kontschieder et al., 2014). These methods are usually collections of decision trees with
axis-aligned splits, such as CART (Breiman et al., 1984) or C4.5 (Quinlan, 1993), that is,
the trees only split along feature dimensions, due to their computational efficiency and ease
of tuning.

However, the axis-parallel split methods often require very deep trees with complicated
step-like decision boundaries when faced with high-dimensional data, leading to increased
variance. Therefore, Olique Decision Tree (ODT) (Breiman et al., 1984, Section 5.2) is
proposed to use oblique decision boundaries, potentially simplifying the boundary structure.
And axis-parallel decision trees can be considered a special case of ODT when the oblique
projection direction is only selected from the set of basis vectors. Theoretically, ODT has
been proven to have stronger representation capabilities and the potential to achieve better
learning properties (Cattaneo et al., 2024).

The major limitations of ODT are the excessive number of model parameters in decision
paths and high overfitting risk in deep nodes (Cattaneo et al., 2024). In fact, the number
of parameters required for the learning model to achieve a certain level of performance
characterizes the learning efficiency of the algorithm. Although variant ODTs (Murthy
et al., 1994; Brodley and Utgoff, 1995) use linear combinations of features in each node, they
do not transmit projection information to the child nodes. The way of retraining in each
node wastes the model parameters we invested in the projection selection, leading to the
insufficient learning efficiency of ODT. On the other hand, as the tree grows, the number of
samples in deep nodes rapidly decreases. ODT ignores the information obtained from the
previous projection selection and retrains the linear model with limited samples, which can
lead to severe overfitting risk (Shalev-Shwartz and Ben-David, 2014).

Previous studies often attempt to deal with these limitations via optimization but ig-
nore the impact of wasted projection information. For example, Zhu et al. (2020) utilize
the mixed-integer optimization (MIO) strategy to reduce the projection parameters by L'
regularization. Lépez-Chau et al. (2013) and Tomita et al. (2020) reduce the prediction
variance of linear models by introducing L? regularization terms or randomization, thus
alleviating the overfitting risk. However, these methods can only deal with the learning
process in each node separately and cannot consider the relationship between nodes in dif-
ferent layers. To overcome this challenge, we must note that, the transmission of projection
information between nodes in different layers plays a critical role.

In this work, we propose an enhanced Oblique Decision Tree, FC-0DT, that leverages a
Feature Concatenation mechanism to improve learning efficiency. This mechanism facilitates
a layer-by-layer feature transformation during the tree’s construction so that the optimized
projection information in the node can be transmitted to its child nodes. Meanwhile, the
inductive bias brought by the concatenated features combined with the ridge regression
method enables the retraining of the linear model in deep nodes to shrink high weights
of original features across the linear model per the L.? penalty term. As a result, FC-0DT
effectively mitigates multicollinearity by shrinking the coefficients of correlated features



and helps alleviate overfitting by imposing a form of constraint. The contributions are
summarized as follows:

e We are the first to establish in-model feature transformation in a single decision tree,
dealing with the problem of parameter waste caused by the split strategy of ODT.

e We prove that the consistency rate of FC-0DT is faster than traditional ODTs and
demonstrate that the feature concatenation mechanism helps improve the learning ef-
ficiency of tree construction.

e Experiments on simulated datasets verify the faster consistency rate of FC-0DT, and
experiments on real-world datasets demonstrate that FC-0DT outperforms other SOTA
ODTs.

Organization The rest of this article is organized as follows. Section 2 reviews previ-
ous work. Section 3 introduces essential background knowledge and notations. Section 4
presents the FC-0DT for regression tasks. Section 5 proves the consistency rate of FC-0DT.
Section 7 conducts simulation and real-world experiments to verify our theoretical results.
Section 8 concludes our work with prospects.

2 Related Work

2.1 Oblique Decision Tree

ODT alleviates the problem of high variance of DT in high-dimensional settings, but faces
extremely high complexity at each node to find the optimal split and suffers the overfitting
risk at the deep node. Heath et al. (1993) and Murthy et al. (1994) propose combining
random perturbations with the hill-climbing algorithm to search for optimal split points.
Further research has demonstrated the potential of evolutionary computation in ODT train-
ing, which employs global optimization strategies to construct decision tree models with en-
hanced accuracy and structural compactness (Canti-Paz and Kamath, 2003; Blockeel et al.,
2023). It also helps to enhance the individual diversity in the tree ensemble, thereby im-
proving the predictive performance of the ensemble (Zhang et al., 2021; Ferigo et al., 2023).
Recently, Bertsimas and Dunn (2017) and Zhu et al. (2020) introduce the MIO strategy
to further improve the efficiency of solving projection directions. Unlike these determinis-
tic approximation algorithms, another intriguing and practical research direction involves
generating candidate projection vectors via data-driven approaches. Some methods utilize
dimensionality reduction techniques, such as PCA (Menze et al., 2011) and LDA (Lépez-
Chau et al., 2013). Tomita et al. (2020) show that sparse random projections or random
rotations can also be introduced by incorporating. Recently, some studies have extended
ODTs to unsupervised learning frameworks such as clustering, demonstrating its advan-
tages in representation ability (Stepisnik and Kocev, 2021; Ganaie et al., 2022). However,
the explanation for their success is largely based on heuristics, until Cattaneo et al. (2024)
demonstrate the consistency rate of excess risk for individual ODT.

2.2 Feature Concatenation

Deep Forest (Zhou and Feng, 2017) successfully constructs non-differentiable deep models by
implementing feature concatenation mechanisms that enable in-model feature transforma-



tion based on decision trees. This mechanism has been theoretically proven to effectively
improve the consistency rate of tree-based ensembles (Arnould et al., 2021; Lyu et al.,
2022). In addition, feature concatenation also has strong scalability and can adapt to dif-
ferent learning tasks by screening concatenated features. Recent research has expanded the
feature concatenation to some specific settings, such as multi-label learning (Yang et al.,
2020) and semi-supervised learning (Wang et al., 2020). Although feature concatenation
has been widely used in ensemble learning, this work is still the first to introduce it in tree
construction.

3 Preliminary

3.1 Setting

Our analysis focuses on a regression framework. The learning process employs a train-
ing dataset S,, containing i.i.d. observations drawn from a joint distribution P(x,y) =
P(x|y)P(x) over the domain X x Y C [0,1]¢ x R. The data-generating mechanism follows:

y:f(m)+€v (1)

where the regression function f(x) = E[y|a] models the conditional expectation of y, while
¢ denotes zero-mean noise with E[e] = 0 and Var[e] < o2.

Our goal is to construct an algorithmic tree estimator hy, (-, T, Sy): [0,1]¢ — R. Here, T
represents a tree architecture induced by S,,. We adopt the abbreviated notation hy,(x) =
hn(2,T,Sy). The performance of hr,, is quantified by its mean squared error:

R(hT,n) =E [(hT,n(x) - f(x))Q] ) (2)

with the expectation computed over x given a fixed training set S,,. As the sample size
n — oo, a sequence of estimators {hr;} ; emerges. Such a sequence is consistent iff
R(hT’n) — 0.

3.2 Decision Tree

A decision tree is a data structure commonly constructed through recursive binary par-
titioning, often implemented in a top-down hierarchical manner using greedy optimiza-
tion. Alternative strategies, such as bottom-up pruning or global optimization frameworks,
may also be employed depending on computational constraints. Under the CART frame-
work (Breiman et al., 1984), splitting operation partitions a parent node ¢ (representing a
region X) into ¢, and tg, achieving maximal impurity reduction measured by mean squared
error (MSE).

Ab,at) =2 ¥ 0, (i — 0% = £ ey (i — G, 1@ 2 1) = Gipl(@ @i > ), (3)

for the pair (b,a), 1(-) represents the indicator function, and g, is defined as the sample
mean of y; observations for which the associated x; data falls within node t.

For traditional DT such as CART (Breiman et al., 1984, Section 2.2), splits always
follow the direction parallel to the axis. In this case, the feature space partition learned
by DT is always a set of hyper-rectangles. When encountering high-dimensional data, deep



trees with high complexity are often generated, leading to overfitting risks. ODT such as
oblique CART uses linear combinations between features as the basis for partitioning, thus
expanding the hypothesis set of projection direction a to R%.

In Eqn. (2), the conditional response output by the decision tree 7" as an estimator is
the average of the target values of all training samples in the leaf node,

hpn(@) = i = n?t) S (4)

x; €L

where n(t) characterizes the local sample size within node ¢.

The existing work to improve ODT mainly focuses on the computational efficiency
and regularization of Eqn. (3), which often only directly affects the splitting of nodes in
each layer and cannot deal with the relationship between nodes in different layers. The
average response in Eqn. (4) wastes the computational cost invested in projection selection.
The existing ODT learning frameworks are unable to effectively transmit the projection
information of the parent node to its child nodes, resulting in limited learning properties.

4 The Proposed Approach

This section presents FC-0DT, whose key idea is to introduce a feature concatenation mecha-
nism so that the layer-by-layer splitting process can achieve in-model feature transformation
just like neural networks. FC-0DT can be not only practical but also a heuristic algorithm
with provably better learning properties. It consists of three steps: feature concatenation,
finding oblique splits, and tree construction, which are detailed in Algorithms 1-3.

Original Features

alx<b alx>b,

» C3
New Features
T T ,
az[x, .| < bs az[x, .| > bs

Figure 1: Illustration of our FC-0DT framework, where [z, y| denotes the feature concatena-
tion between x and y.

Concatenation

ajlx v > by

4.1 Feature Concatenation

As shown in Figure 1, when the parent node t of each level splits, it will learn the oblique
decision rule a'x < b. We will record the projected score §; = a'x as the augmented



Algorithm 1 Feature concatenation.
Input: The data X falling into the current internal node ¢ of a tree; y; denotes the gener-

ated new feature for the data of node t.
Output: The data matrix X; after feature concatenation.
1: function X; «+— FEACONC(X, y¢)
2 X+ [ X, 94
3: return X;
4: end function

Algorithm 2 Finding the oblique split in an internal node.

Input: The training set S®) = (X, y) falling into the internal node ¢ of a decision tree; A
is the hyper-parameter controlling the regularization strength.
Output: The projection a* and the threshold b*
1: function (a*,b*) + FINDOBLIQUESPLIT(S®)

2: a* < argming ||y — X "alj3 + \|a||3
3: b* < argmax;, A(b,a*,t)
4: return (a*,b")

5. end function

feature after entering the child node, and concatenate it with the original feature x of the
sample in the parent node to obtain the complete feature of the sample in the child node

Xt < [ X, 94, (5)

where X; € [0,1]"*¢ denotes the feature matrix of samples in node ¢, and [-,-] denotes
the concatenation of two feature matrices to form a new feature matrix. We encode the
optimized projection information from the parent node into the new feature, and pass it
along the decision path to the child nodes through concatenation operations to reduce
the computational cost. This idea is similar to the Boosting algorithm (Bartlett et al.,
1998), which uses different learners to process independent parts of data separately, and
a stronger learner can be obtained by the ensemble. Feature concatenation has been used
in deep forests to construct boosting frameworks to improve learning efficiency (Lyu et al.,
2019). This feature concatenation process is repeated for each split until the desired tree
size and constructs a FC-0DT, which is detailed in Algorithm 1.

4.2 Finding Oblique Splits

For FC-0DT, we rely on linear combinations of multiple features for binary splits at each
node. For a sample = € R? in a feature space, the decision function at the node ¢ can be
formulated as:

ax < b, (6)

with coefficients a; denoting the projection direction and b; indicating the splitting thresh-
old. Determining the optimal value for a; is proved to be more challenging than identifying
a single optimal feature and setting a suitable threshold for a split in the univariate scenario
(Murthy et al., 1994).



Considering that we have introduced a feature concatenation mechanism in the ODT
generation process, this can lead to collinearity issues between the original and augmented
features of the sample. Especially, the correlation between the augmented feature a '« and
the label y is high, which can cause overfitting problems during the training process as the
augmented feature has a significant impact on the model’s output. Therefore, we choose
ridge regression to find the projection direction of the split

ay(A) = argmax |y — X a3 + Madl3 (7)
at

using regularization parameter A.

Algorithm 3 Learning an oblique decision tree with feature concatenation (FC-0DT).

Input: S, = {(z1,v1),...,(®n,yn)} is the training set; X = [x1,...,x,] is the feature
matrix; I' is a set of split eligibility criteria; pre-specified number of leaves ¢,
Output: FC-0DT regression tree T
1: function 7'+ TREECONSTRUCTION(.S,,)

2: t+1
3: te 1
4 S« g,
5: while ¢t <t.+ 1 do
6: if " satisfied then
7: (a*,b*) + FINDOBLIQUESPLIT(S®) > refer to Algorithm 2
8: g — X, a* > generate the new feature via linear projection
9: X, + FEaConNc(X, 7y) > update Xy, refer to Algorithm 1
10: Yi — Yr — Yt > update y;
11: SEFD « fi: xla* < b*, Vie SU}
12: SUEF2) ¢ Lirxla* >0, Vie SW}
13: a; <+ a*
14: by < b*
15: Kt < {te + 1,t. + 2}
16: te=1t.+2
17: else
18: (at, b, K,t) <+ NULL
19: end if
20: t+—t+1
21: end while
22: return (S(l),{at,bt,ﬁt,gjt}iil)

23: end function

With this choice, the node model is optimized as (Smith and Campbell, 1980)

Var(X "ay)
\) = X' : :
) = argmax Cov(X o 9] G 37 + 2

(8)

Ridge regression can shrink high feature weights across the linear model per the L2
penalty term. This reduces the complexity of the model and helps make model predictions
less erratically dependent on any one or more features.



4.3 Tree Construction

With these two steps at hand, we can iteratively perform node splitting and feature concate-
nation to construct an enhanced oblique decision tree with the ability of in-model feature
transformation, named FC-0DT. The tree construction procedure is described in detail in
Algorithm 3.

To prepare for analyzing the convergence rate of excess risk in Section 5, here we intro-
duce the following definition.

Definition 1 (Orthonormal decision stumps). The orthonormal decision stumps is defined
as
tr) — t
’l/Jt(ZU) _ Cip, (w)n( R) CtR(m)n( L) ’ (9)
Vwt)n(tr)n(tr)
where ¢, (x) = ' (X, Xy, +/\I)_1 X, and X;, = X o1(x € t1,), where o denotes

Hadamard multiplication. For internal nodes t € [T, the equality w(t) = n(t)/n represents
the proportion of observations assigned to node t.

Next, we demonstrate that tree estimation is the empirical orthogonal projection of y
onto the linear span of orthonormal decision stumps.

Lemma 2 (Orthogonal tree expansion). If T' denotes a decision tree constructed by FC-ODT
method, then its output (4) admits the following orthogonal expansion

hpp () = Z (Y, Yt)n - i) | (10)

te[T]

where P, = (wt(xl),...,¢t(wn))T is defined in Definition 1. Let hr, be the empirical
orthogonal projection of y onto the linear span of {ti}cir). Then, we have [y, ¥:)|> =

A(b,a,t) .

Remark 3. Diverging from conventional ODT’s orthogonal cut paradigm, which myopically
partitions feature space and optimizes locally constant predictors at each bifurcation (Cat-
taneo et al., 2024), Lemma 2 shows that FC-ODT uses a feature concatenation mechanism
to make the prediction factors of its orthogonal decision stumps contain information about
the projection selection. Especially, the inductive bias brought by new features leads to child
nodes tending to search for residual ridge regression solutions near the projection of the
parent node, which enables the child nodes to learn local linear structures more efficiently
in the subspaces.

Representation of feature concatenation Our method passes the linear projection
information in the parent node to the child nodes through feature concatenation. Due to the
linear transferability, it can be known that the method does not change the linear nature of
the node splits in the ODT. In other words, an ODT obtained using feature concatenation
can be completely represented by a traditional ODT. This also corresponds to what we
emphasized in the abstract, that the goal of this paper is to show that feature concatenation
improves the learning efficiency of ODTs, rather than changing their representation.



Time complexity In terms of time complexity, a single node in FC-ODT needs to solve
a d + 1-dimensional ridge regression problem to get the optimal projection direction a* and
threshold b*, so its complexity is O(n(d+1)?+(d+1)3) = O(d3+(n+3)d?). Since this paper
uses an oblique decision tree with restricted maximum depth, the computational complexity
of the overall tree is O((25 —1)(n(d+1)? + (d + 1)) = O((2X —1)(d® + (n + 3)d?)). This
is of the same order as the computational complexity O((2% — 1)(d® + nd?)) of Ridge-
ODT. Analysis of this computational complexity reveals that the magnitude of complexity
is dominated by O(nd?) when the amount of data is much larger than the number of
feature dimensions, and vice versa, when the number of feature dimensions is much larger
than the amount of data, the magnitude of complexity is dominated by O(d®). Here,
the dependence of computational complexity on the number of feature dimensions can be
reduced by introducing an evolutionary algorithm, but it also introduces an additional
influencing factor of the number of iterations. In practice, evolutionary algorithms are
indeed more advantageous in terms of computational efficiency. However, evolutionary
algorithms often use heuristic ideas, and their theoretical performance is difficult to portray,
so it is not possible to compare them with our method in terms of learning efficiency
theoretically.

5 Theoretical Analysis

In this section, we show that FC-0DT can achieve a faster convergence rate of consistency
with respect to the tree depth K. Detailed proofs can be found in the supplementary. First,
we introduce the definition of an additive model, which is a common family of functions in
statistical analysis.

Definition 4 (Ridge expansions (Cattaneo et al., 2024)). Consider the family of functions
consisting of finite linear combinations of ridge functions:

G = {g(x) = Zf:lgk(al—crw)v aj € Rdagk: R%Rv k= 17"'7Ka ngﬁl < OO}? (11)

where ||g||z, is a total variation norm defined in Definition 5.

Definition 5 (Total variation norm in node t). Let V' (h,a,t) quantify the total variation
of ridge function & — h(a'x) over node t via

IPl-1
V(h,a,t) =sup Z |h(ze41 — h(20))] (12)
P =0
where the supremum considers all finite partitions P = {z, ..., zp|} of the projected interval

I(a,t) = [minge; @'z, maxge; a' x]. For any function f € F = cl(G), the L1-total variation
norm at node t is characterized as:

£zt = liminfeyo geg {Zszl V(ge, an,t): g(x) = Sy grlag @), ||f — gl < 6}- (13)

The models that decompose the regression function into a sum of ridge functions have
been widely recognized and promoted by Stone (1985), as well as Hastie and Tibshirani



(1987). In particular, the consistency of ODT under this assumption has been proven by
Cattaneo et al. (2024). Within this analytical framework, we investigate how feature-space
augmentation in FC-0DT governs model behavior. Our theoretical derivations necessitate
the subsequent stochastic data assumption:

Assumption 6 (Exponential tails (Cattaneo et al., 2024)). The conditional distribution of
y given x has exponentially decaying tails. That is, there exist positive constants c1,ca, and
M, such that for all x € X,

P(ly| > B+ M| x) < cjexp(—c2B?), B>0. (14)

Theorem 7 (Consistency rate for FC-0DT). Let the conditional expectation f(x) be from
the ridge functions defined by Definition 4 and the conditional distribution P(y|x) satisfying
Assumption 6. Consider a training set of n samples drawn from this distribution and a
K-layer decision tree T, constructed by FC-ODT on the training set. Then, for any K > 1
and n > 1, we have

. llgll og?n
E [[|hrn(x) — f(@)||3] < 2infrer {Hg — FI3 + C1 st + e } ;o (19)

where C; = C1(B, M) and Cy = Ca(cy.c2, B, M) are two positive constants.

Remark 8. Theorem 7 proves that FC-0DT is consistent, and the convergence rate is the
same as conventional ODTs with the increase of sample size n, both of which are better
than azis-parallel DT. Since the feature concatenation mechanism transmits the projection
information to child nodes, the convergence rate of excess risk is O(1/K?) w.r.t. tree depth
K, which is faster than conventional ODTs with order O(1/K) in (Cattaneo et al., 2024).
This result demonstrates that FC-ODT has advantages in learning efficiency compared to
conventional ODTs. FEspecially considering the high computational complexity of optimal
linear projection and the fact that deep decision paths can impair the interpretability of the
model, we often limit the tree depth of ODT in practice (Zhu et al., 2020). When K is
small, the theoretical advantages of FC-ODT over ODT become more significant.

6 Proofs

In this section, we provide the detailed proofs for the main theorem and lemma.

6.1 Proof of Lemma 2

Proof Set Uy = {u(x)l(x € tr) +v(x)l(x € tr) : u,v € span(H)} and consider the closed
subspace V; = {v(z)1(x € t): v € span(H)}. By the orthogonal decomposition property of
Hilbert spaces, we can express U; as the direct sum V; @th, where th_ ={u e ly: (u,v), =
0,Yv € V;}. Let ¥; be any orthonormal basis for V; that includes w=/2(¢)1(x € t), where
w(t) = n(t)/n. Let Ui be any orthonormal basis for Vi that includes the decision stump
defined by Eqn. (9).
Consider that §j;(x) = a/ x is the projection of y onto V;, where a; = (Xt—; X, + )\I)_1 XtTLy,

we have

() = > (Y, P)n(x) (16)

PeW,

10



and

G (®)1(m € 1) + G (@)1 € tr)
= 3 ). (17)

’llJE\I/tU\l/#‘

Using the above expansions, observe that for each internal node t,

> W p)nt(@) = (e, — J)U( € tr) + Gy — ) L(z € tr) . (1)
Ppevi
For each ® € X, let tg,t1,...,tx_1,tx =t be the unique path from the root node tg to

the terminal node ¢ that contains . Next, sum (18) over all internal nodes and telescope
the successive internal node outputs to obtain

K—

,_.

(Utpsr () = Tty (2)) = Tty () = to () = Ge() — F() | (19)
k=0

where g is the linear estimation output by solving ridge regression in the root node:
min ||y — X "all3 + Allall3 . (20)

Combining Eqns. (18) and (19), we have

Zyt I(z €t) Z Z%

te[T] te[T\{to} \I/i
orve (21)
Z > W ¥hv(a)
te[T) hewi-
where we recall that the root node ¢y is an internal node of T'.
Finally, the decrease in impurity identity (3) satisfies that:
- 1
Rbyat) =~ 3 (i — (@)’
mlet
- Z — o (@)1 (; € tr) = e (i) 1(; € tr))°
93 ct
) . (22)
= (=D w2 lwenl ) = =D wi— D> [yl
x;Et e, €t eV UDH
= >y )l
YEV
|

11



6.2 Proof of Theorem 7

Proof Following the proofs in (Cattaneo et al., 2024), we begin by splitting the MSE

(averaging only with respect to the joint distribution of {A4;: ¢ € [T}]}) into two terms
Er[[|hn(®) = f(@)|’] = E1 + B, (23)

where

By =Er,[||hr, n(2) — f(@)]%] = 2E1,[llhr0(2) = yl7 — ly — f(@)I7])
—a(n, k) = B(n) , (24)
By =2(Eq [[|hr, n(2) — yll2] = lly — f(@)[7) + a(n, k) + B(n) (25)

and a(n, k) and f(n) are positive sequences that will be specified later.
To bound E[F;], we split our analysis into two cases based on the observed data y;.
Accordingly, we have

E[E\] = E[E1(Vi: |y;| < B)] + E[E11(: |ys| > B) (26)

Firstly, we deal with the bounded term E[E11(Vi: |y;| < B)]. According to (Cattaneo
et al., 2024, pages 24-25) and (Gyorfi et al., 2002, Lemma 13.1, Theorem 11.4), let R = QB
such that R > M > ||yl|co, we have

P (Eryc[[lhzin(®) — f(2)[%] 2 B, Vit |yi| < B)

< 14supN (iég F, (R)j[,l([p)wn)) exp G%) 7 (27)

where N ( 105 Fak(R), L1 (Pwn)) denotes the covering number of F,, 1 (R) by balls of radius

r>0in L1(Pgn) Wlth respect to the empirical discrete measure Py~ on ™ which satisfies

that ) .
B(n) enp\d\? [ 240eR? VC(#H)2

s D) < (3(=2 el _

N<40R’f”’k(R)"C1(P“” )) < 3( d ) B(n) (28)
Combining Eqns. (27) and (28), we have

ok g\ Ve

P(El >0, Vi: ’yz’ < B) < 42 <<€Zp) ) <Z/4BO(6?) e 2568};24 , (29)
n

so that By > 0,Vi: |y;| < B < 1/n? and E11(Vi: |y;| < B) < 12R%.
Then, by choosing

2568 R4 <2kdlog(enp/d) + 2*log(3) + VC(H)2 ! log (2%0(6? ) + log (14n? ))

n

a(n, k) =

240e R?
Bn) = —5—,

" (30)

12



we have

2 22
1212 _ 12Q°B°

E[E11(Vi: |ys| < B)] < 12R*P(E; >0, Vi: |y;] < B) < — >

< (31)

Secondly, for the unbounded term E[E11(i: |y;| > B)], by Cattaneo et al. (2024), we
have
E[llh1yn (@) — f(@)*L(i: |yi| > B)]

32
<(Q +1)*V/(n + DEyA]v/ner oxp(—ea(B — M)?) . 2

and
E[Es) = ||f — gl + Elllhg,n(®) — 9l — ly — 9(@) 2] + a(n, k) + B(n) . (33)

Since the excess risk can be decomposed by the Ridge expansions g(x)

Ellhzn(x) = yl7 = lly = F@)2] = If — 9 + Elllhz o () — yl7 = lly — 9(@)[7], (34)

we have
Ery [[1hn(®) = f(@)|1P) <If = gl + Ell Az n(2) = yl7 = Iy — g(2)]7]
25 (d log? (35)
Oy (d+ VC(H))log*n 7
n
for some positive constant Ca(cy, co, B, M).
Define the squared node-wise norm and node-wise inner product as || f||? = n%f) >t f (x;))?
and (f,g): = ﬁf(mi)g(wi).We define the node-wise excess training error as
R (t) = [P n(®) =yl = ly — gll} - (36)
Then, we define the total excess training error as:
Ri =Y wt)Rk(t), w(t)=n(t)/n, (37)
teTk

where t € T means t is a terminal node of T
According to the orthogonal decomposition of the FC-0DT in Lemma 2, we have

Rg=Rx1— Y > [yl (38)

teTk 1 peTy

We denote by Er, the expectation is taken with respect to the joint distribution of
{A;: t € [Tk]}, conditional on the data. By the definition of Ry, we have

E[Rk] = El|hrycn(x) =yl — ly —gl7] = 0. (39)

Using the law of iterated expectations and the recursive relationship obtained in Eqn. (38),
we have

Ery [Rk] = Ery UETK|TK71 [Ri]]

D> (40)
= ETK_l[RKfl] - ETK_l ETK‘TK,1 ’<y,1,b>n|2 .
teTK 1 el
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According to the sub-optimal probability defined by Cattaneo et al. (2024, Section 2.2)
and the sum of the iterative equality (40), we have

EnclBxl= > Pa(w max Apat), (41)
teTK _1: RKfl(t)>0 e

where Py, (k) = P4, (maX(bﬂ)eRxAt A(b,a,t) > K MaX(}, q)cR1+d A(b, a, t)) is defined to quan-
tify the sub-optimality of the learning algorithm theoretically, and P 4, denotes the proba-
bility w.r.t. the randomness in the learning algorithm .A4;.

By (Cattaneo et al., 2024, Lemma 4 and Lemma 6), we have

ETK [RK] < ]ETKfl [RK—I] - /{}ETK—l (42)

Ef,_ [Rr—]/w(t)
ZtETK 1 QHgHEl ()

Due to the feature concatenation mechanism transmitting projection direction infor-
mation within the model, the variation || gH%1 ® in the node ¢ in the path decreases with
increasing depth. This phenomenon is similar to the decay of residuals in boosting algo-
rithms, and we have obtained a recursion for E[Rg], by (Cattaneo et al., 2024, Lemma 5),
we have

1

E[Rk] < , (43)

kYot VE  er,, w)Qlgl%, ]

where
5SS Qo) < DOk | mas 0 3 win (44)
el = " e

€Ty t€Ty—1

< Hg”zﬁl(t’E ax Q (45)
| teHTlK}E1 '
Then, we obtain the inequality in the expected excess training error,
2Q| 912 2M||g||7 2M||g]1Z
E < L < L~ L 4
Rl = K(K —1) ~ BK(K — 1) BK?2 (46)
Finally, combining Eqns. (46) and (35), we have
2K VC(H)log? n
E [||hrn(2) — f(@)I[3] < 2llg - fII3 + 2E[RK] + Co -
47)
2K dlog? (
<2 inf {|| e ”9”51 +Cy =28 ”} ,
fer n

for two positive constants C1(B, M) and Cy(cy, ca, B, M). [ |
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7 Experiments

In this section, we verify our theoretical results on two simulated datasets that align with
our assumptions. Moreover, we evaluate FC-0DT on eight real-world datasets and compare
it to other state-of-the-art ODT's to demonstrate its superiority.

7.1 Results on Simulated Datasets
7.1.1 IMPLEMENTATION DETAILS

Dataset We generate two simulated datasets sim1 and sim2. They are fully aligned with
the assumption of our theoretical analysis, as stated in Eqn. (11). All simulated datasets
are generated as y = f(«) + ¢, where e ~ N (O, 02). For sim1 dataset,

f(z) =ReLU(z1) + ReLU <"'32;“’3>

+ ReLU (W) + ReLU (‘“ s ng ha mm) (48)

m1+w3+m5+m7+w9)

ReLU
+ Re ( 5

For sim2 dataset,

f(@) = exp(1) + exp (w;w)

+ exp <ZB4+$35+$6>+6XP <x7+wgzw9+w10) (49)

<$1+$3+$5+$7+5€9)
+ exp .

)

For each simulated dataset, = is uniformly distributed over [—3,3]'Y and o = 0.01. Note
that the test samples are generated without noise €, which aligns with the definition of
consistency.

Compared Methods We choose a representative ODT method for comparison, i.e.,
Ridge-0DT (Menze et al., 2011), which uses ridge regression to learn the optimal split
direction. Since FC-0DT also uses ridge regression for the linear projection, Ridge-0DT can be
seen as an ablation study without feature concatenation. On the other hand, the predictive
performance varying with tree depth K and number of samples n for both methods can
validate our theoretical findings.

Training Details Experiments are run on a machine with a 3.40 GHz Intel i7-13700KF
CPU. To prevent overfitting risk caused by insufficient sample size in leaf nodes, the mini-
mum number of samples to split a node is set to 20, and the minimum number of samples
in leaf nodes is set to 8. The regularization parameter A in FC-0DT and Ridge-0DT is chosen
from {0.0001,0.001,0.01,0.1,1, 10,100, 1000} using grid search with 5-fold cross-validation
on the training set.
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Figure 2: MSE values with different maximum tree depths.

Evaluation Protocol The performance is measured by MSE (Mean Squared Error) on
the test samples. The decrease in MSE reflects convergence. Each simulated dataset is
randomly generated 10 times, and the average performance is reported.

7.1.2 CONVERGENCE RATE w.r.t. TREE DEPTH

This experiment aims to verify the theoretical advantage of FC-ODT on convergence rate
w.r.t. the maximum tree depth. According to Theorem 7, when n is sufficiently large, the
O(1/n) term is sufficiently small, and the relationship between tree depth K and test error
can be studied. So we set the number of training samples to 2000. Theorem 7 indicates
that the test error of FC-0DT should be considerably better than Ridge-0DT with a limited
tree depth, so we set tree depth K € {2,3,4,5,6}. We compare FC-0DT with Ridge-0DT
on the two simulated datasets siml and sim2, each time 2000 training samples and 500
test samples are randomly generated. Figure 2 shows the average test MSE of FC-0DT
and Ridge-0DT with the increasing tree depth. We can observe that FC-0DT has a faster
convergence rate, which is consistent with our theoretical result.

7.1.3 CONVERGENCE RATE w.r.t. NUMBER OF SAMPLES

Based on Figure 2, K = 4 performs well. While deeper trees would result in a slight per-
formance improvement, this comes at the cost of losing interpretability, which goes against
the original intent of ODTs. Therefore, we choose K = 4 as the regular setting there-
after. We compare FC-0DT and Ridge-0DT with increasing number of training samples
n € {50,100, 200, 500, 1000, 2000} on the two simulated datasets: sim1 and sim2. Figure 3
shows the test MSE of FC-0DT and Ridge-0DT with increasing number of samples. We can
observe that both exhibit similar convergence tendencies as the number of training samples
increases, which aligns with previous theoretical findings. Meanwhile, FC-0DT always has a
certain advantage in performance over Ridge-0DT, and its superiority is more pronounced
with limited training samples. It suggests that the feature concatenation mechanism has po-
tential in handling tasks with limited samples. This practical discovery is worth theoretical
analysis in future work.

16



0.4 1

EZ3 FC-ODT i EZ3 FC-ODT
3 [ Ridge-ODT 0.4 1 [ Ridge-ODT
031
‘ 031 4|
4 4 |
S 0277 i s i i
2V VIV 011 A8 U8
0.0 - i i ! i 4 i 0.0 - i i i i £ i
50 100 200 500 1000 2000 50 100 200 500 1000 2000
Number of training samples Number of training samples
(a) On siml dataset. (b) On sim2 dataset.

Figure 3: MSE values with different numbers of training samples.

Table 1: Dataset information.

Dataset Nsamples Nfeatures
sim1 2000 10
sim2 2000 10
abalone 4177 8
appliances 19735 32
auto_mpg 398 7
bodyfat 252 14
cadata 20640 8
concrete 1030 8
cpusmall 8192 12
french 105168 20
housing 506 13
pm2.5 41757 14
space_ga 3107 6
superconductivity | 21263 81
mg 1385 6
mpg 392 7
msd 515345 90

7.2 Results on Real-World Datasets
7.2.1 IMPLEMENTATION DETAILS

Datasets We conduct experiments on two simulated datasets and eight LIBSVM regres-
sion datasets (Chang and Lin, 2011). Table 1 summarizes the details of the simulated and
real datasets. Each dataset is randomly split into training and test sets in a ratio of 3:2.
This data split process is repeated 10 times for 10 independent runs.
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Compared Methods We test the R? of our method FC-0DT against CART and other
state-of-the-art ODT methods.

e 510 (Zhu et al., 2020): An ODT method using mixed-integer programs (MIP) to learn
optimal split directions.

e TAQ (Carreira-Perpindn and Tavallali, 2018): An ODT method alternately updating the
tree structure and linear combination to learn optimal split directions.

e BUTIF (Barros et al., 2014): An ODT method using embedded feature selection to learn
optimal split directions.

e Ridge-0DT (Menze et al., 2011): An ODT method using ridge regression to learn opti-
mal split directions.

e EC-0DT (Czajkowski and Kretowski, 2013): An ODT method using evolutionary com-
putation to learn optimal split directions.

Training Details This experiment’s configurations are the same as the simulation exper-
iment. Based on the simulation experiments, we keep the setting of tree depth K = 4 for
all the compared methods.

Evaluation Protocol Unlike the simulation experiments, in real-world problems, we
do not know the underlying function f(x). Therefore, in this experiment, we no longer
compute MSE on the noise-free ”test samples”. Instead, we evaluate the performance on
the randomly split test samples and use R? as the performance measure:

SST'BS

R*=1- :
SStotal

(50)

where S.S,¢s is the sum of squared residuals, representing the difference between the pre-
dicted and actual values of the model, and 5S4 is the total sum of squares, representing
the difference between the actual value and the average value. The value range of R? is
between 0 and 1. The closer R? is to 1, the model explains more variance and fits better.

7.2.2 R?2 SCORE COMPARISON

Table 2 reports the performance of the compared methods on seventeen datasets. The sta-
tistical significance of the experiments is tested through the Wilcoxon rank-sum test (Rosner
et al., 2003). It shows that FC-0DT achieves the best average test R? score on thirteen out
of seventeen datasets, and the best average rank compared to other state-of-the-art ODT
methods: Ridge-0DT, TAO, BUTIF, S10 and EC-0DT. It is significantly better than the baseline
CART on all seventeen datasets. As we mentioned that Ridge-0DT can be viewed as an abla-
tion study without feature concatenation, the comparison between FC-0DT and Ridge-0DT
shows that the feature concatenation mechanism improves performance, indicating that
transmitting projection in the decision paths improves the learning efficiency. We also con-
ducted the Friedman-Nemenyi test of the compared methods on seventeen datasets, and
Figure 4 shows that the ranking of FC-0DT is significantly better than that of TAO, BUTIF,
S10, and EC-0DT.
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Table 2: Test R? (avg.+std. of 10 times of running) on seventeen datasets. The best result
is in bold. Considering the Wilcoxon rank-sum test with a confidence level of 0.1,
we use e (or o) to indicate that FC-0DT is significantly better (or worse) than the
corresponding method.

Dataset ‘ FC-ODT Ridge-ODT TAO BUTIF S10 CART EC-ODT
sim1 0.87710.007  0.84910.0108  0.85230.0150 0.7722£0.013@  0.69130.023@  0.5881-0.023@  0.766=0.032e
sim2 0.895+0.019  0.87410011®  0.88610.009¢ 0.79910.0108 0.77210.017¢  0.72410.018¢  0.7120.033@
abalone 0.541£0.021 0.548£0.010 0473100150  0.41710.028¢  0.46710.0200  0.44710.0120  0.4910.023@
appliances 0.20374-0.011 0.20710.016 0.2010.021  0.04930.014®  0.1163-0.006®  0.164=£0.005@  0.162+0.010@
auto_mpg 0.826+0.028  0.82310.015 0.81410.029  0.77310.023@  0.7947£0.029@  0.80310.021®  0.786F0.031@
bodyfat 0.955£0.036  0.9194-0.009¢  0.87510.032¢  0.81810.0368  0.9401+0.024®  0.938£0.0168  0.770=£0.059
cadata 0.701£0.004  0.7000.005  0.6711-0.008®  0.62410.005  0.5521+0.012¢  0.543£0.006®  0.680£0.012
concrete 0.7324£0.038  0.7302-0.027 0.713£0.026  0.60910.038®  0.6871-0.041®  0.6712£0.026®@  0.70710.028@
cpusmall 0.9494-0.007  0.95610.0090  0.9621-0.0040  0.935£0.005@  0.9391+0.002@  0.9341-0.011®  0.94970.006
housing 0.77610.029  0.7647£0.031 075200318  0.7013-0.047@  0.7172£0.0608  0.73810.0108  0.62510.066®
pm2.5 0.352£0.007  0.3443-0.0060  0.13710.078¢  0.22210.007@  0.26310.008¢  0.261£0.009¢  0.3270.008@
space_ga 0.58310.035  0.5621-0.013@  0.45310.161@ 0.47810.021@ 0.50110.029¢  0.508+0.018@  0.451£0.084e
superconductivity | 0.7894-0.014  0.842£0.0040  0.798£0.0090  0.72310.004®  0.6991-0.015@  0.7341-0.005  0.76310.010@
french 0.943£0.001 093940001 093810001 0.89010.001® 0.87710.004® 0.911£0.004®  0.9060.010@
mg 0.65710.016  0.6401-0.018¢  0.6147£0.0258  0.5361-0.021®  0.643£0.0218  0.62510.021®  0.64310.0270
mpg 0.84010.019  0.8332£0.021 0.83310.020  0.78910.0368  0.805£0.039@  0.80510.025@  0.793£0.037e
msd 0.30610.001  0.29710.001® timeout 0.0417£0.057@  0.09471-0.008®  0.1424-0.001®  0.2281-0.005@
average rank 1.35 2.18 4.00 5.94 4.94 4.88 4.71
BUTIF ®
S10 —_—
CART —_—
ECODT —_—
TAO —_—
Ridge-ODT [ ]
FC-ODT . —
0 1 2 3 4 5 6
Rank

Figure 4: The Friedman-Nemenyi test of the compared methods on seventeen datasets.

7.2.3 COMPUTATIONAL COMPLEXITY COMPARISON

In Figure 5, we plot the time consumption of all the compared methods. The time consump-
tion includes hyper-parameter tuning and training process. Figure 5 show that the time
consumption of FC-0DT is better than TAO and BUTIF, close to Ridge-0DT and S10. In addi-
tion, FC-ODT outperforms EC-ODT on datasets with smaller sample sizes, but EC-ODT
has less runtime on datasets with larger sample sizes. This is consistent with the results of
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our analysis on time complexity in Section 4. It indicates that the feature concatenation
mechanism hardly incurs any additional time overhead. However, the result shows that
all the ODT methods have significantly longer running time than the axis-parallel tree,
CART, mainly due to calculating the optimal linear projection. Reducing the computational
complexity of optimal linear projection in ODTs is still an open problem.

FC-ODT Ridge-ODT MM TAO E= BUTIF EHEE S10 XXX CART EC-ODT
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Figure 5: Running time on seventeen datasets.

8 Conclusion

This work points out that the drawback of conventional ODTs lies in the waste of projec-
tion information during the tree construction. To address it, we propose FC-0DT, which
introduces a feature concatenation mechanism to transmit the projection information of
the parent node through in-model feature transformation, thereby enhancing the learning
efficiency. Both theory and experiments have verified that the projection information trans-
mission brought by feature concatenation helps to improve the consistency rate. In future
work, we will explore how to use random projection to enhance the diversity of concatenated
features, thereby constructing an efficient random forest algorithm based on FC-0DT.
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