Multi-Class Imbalance Problem: A Multi-Objective Solution

Yi-Xiao He, Dan-Xuan Liu, Shen-Huan Lyu, Chao Qian and Zhi-Hua Zhou

PII:	\$0020-0255(24)01070-3
DOI:	https://doi.org/10.1016/j.ins.2024.121156
Reference:	INS 121156
To appear in:	Information Sciences
Received date:	6 January 2024
Revised date:	1 July 2024
Accepted date:	3 July 2024

Please cite this article as: Y.-X. He, D.-X. Liu, S.-H. Lyu et al., Multi-Class Imbalance Problem: A Multi-Objective Solution, *Information Sciences*, 121156, doi: https://doi.org/10.1016/j.ins.2024.121156.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier.

Highlights

- We explicitly consider the between-class trade-off issue in the multi-class imbalance problem.
- To find the many optimal trade-off solutions, we design an efficient multi-objective optimization method incorporating selective ensemble and varied downsampling rates.
- We further propose a margin-based objective modeling to tackle the many-class case, and analyze its optimization ability.
- Our methods successfully obtain diverse and highly competitive solutions within an acceptable running time.

Multi-Class Imbalance Problem: A Multi-Objective Solution

Yi-Xiao He^{a,b,1}, Dan-Xuan Liu^{a,b,1}, Shen-Huan Lyu^{c,d,a,2}, Chao Qian^{a,b,1,*}, Zhi-Hua Zhou^{a,b,1}

^aNational Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China ^bSchool of Artificial Intelligence, Nanjing University, Nanjing, 210023, China ^cKey Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing, 211100, China ^dCollege of Computer Science and Software Engineering, Hohai University, Nanjing, 211100, China

Abstract

Multi-class imbalance problems are frequently encountered in real-world applications of machine learning. They have fundamentally complex trade-offs between classes. Existing literature tends to use a predetermined rebalancing strategy and mostly focuses on overall performance measures. However, in many real-world problems, the true level of imbalance and the relative importance between classes are unknown, making it difficult to predetermine the rebalancing strategy and the evaluation criterion. In this paper, we explicitly consider the between-class trade-off issue in the multi-class imbalance problem. We consider all the classes to be important and find a set of optimal trade-offs for the decision-maker to choose from. To reduce the computational cost of this process and make it a practical method, we seek the help of selective ensemble and multiple undersampling rates, and propose the Multi-class Multi-objective Selective Ensemble (MMSE) framework. We further equip the objective modeling with margins to reduce the number of objectives when the task has many classes. Experimental results show that our proposed methods successfully obtain diverse and highly competitive solutions within an acceptable running time.

Preprint submitted to Information Sciences

^{*}Corresponding author.

 $[\]label{eq:linear} \ensuremath{^1{\rm heyx,liudx,qianc,zhouzh}@lamda.nju.edu.cn}$

 $^{^{2}}$ lvsh@hhu.edu.cn

Keywords: class-imbalanced learning, ensemble method, multi-objective optimization

1 1. Introduction

Class imbalance is a problem frequently encountered in classification
tasks [18]. The data collected can be naturally imbalanced, such as the number of patients with different diseases [22]. Abundant imbalanced learning
methods have been developed to enhance the relative impact of the minority class in binary classification problems and achieved good results [17, 4,
5, 25]. However, multi-class imbalance problems are fundamentally more
complex [35, 24].

Firstly, in binary classification, even random guesses can achieve an accu-9 racy of 50%, making the problem relatively easy. In contrast, in multi-class 10 cases, vulnerable classes can perform extremely poorly. Secondly, in binary 11 classification, the trade-offs are only between one small class and one big 12 class, while in multi-class imbalance problems, the trade-offs are not only 13 between small and big classes, but also between different small classes and 14 between different big classes. Therefore, designing a rebalancing strategy for 15 multi-class imbalance problems is more challenging. Finally, when it comes 16 to model evaluation, it is hard to describe a multi-class classifier in one overall 17 performance score. 18

In addition to multi-class classification being more complex than binary 19 classification, another challenge we often face in real-world applications is 20 that the ground-truth level of imbalance and the ground-truth relative impor-21 tance of the classes are often unknown [48]. Note that under the traditional 22 close-environment assumptions, we always know the targeted performance 23 measure beforehand [49]. Nevertheless, in an open environment, it is not 24 always possible to determine the relative importance of each class a priori. 25 If we can provide the decision-maker with all the possible best trade-off per-26 formances of the model, it will greatly help them make decisions in an open 27 environment. 28

Taking disease classification as an example, misdiagnosis of certain rare diseases (classes with a small number of samples) may cause serious problems, but meanwhile it is impossible to quantify the importance of each class. Figure 1 gives two examples of different trade-offs. In each example we assume that there are only two optimal trade-offs, in fact, there may be

(a) Assuming there are only two optimal trade-offs as shown in the figure, the decision-maker chooses the classifier shown in red.

(b) Assuming there are only two optimal trade-offs as shown in the figure, the decision-maker chooses the classifier shown in blue.

Figure 1: Different trade-offs of per-class accuracy. Different optimal trade-offs result in different choices by the decision-maker.

many more trade-offs in real applications. If the only two optimal trade-offs 34 are as shown in Figure 1(a), the decision maker may choose the classifier 35 shown in red because it can distinguish at least the first four classes. If 36 the fifth class is indeed important, a separate inspection can be designed. 37 If the only two optimal trade-offs are as shown in Figure 1(b), the decision-38 maker may choose the classifier shown in blue because it *achieves satisfactory* 39 performance on all classes. The fundamental factor that affects the decision-40 maker's choice here is that the improvement of the fifth class has different 41 effects on other classes. Only by presenting different optimal trade-offs to 42 the decision-maker can she make better choices. 43

Therefore, when we cannot determine the importance of each class in advance, we hope to obtain diverse optimal trade-offs among classes for the decision-maker to choose from. To achieve this goal, we propose to model the multi-class imbalance problem as a multi-objective problem

$$maximize(M_1, M_2, \dots, M_l) , \qquad (1)$$

where l denotes the number of classes, M_i is the model's performance on the *i*-th class. Given that solutions excelling in different objectives are incomparable, multi-objective problems usually have multiple optimal solutions [50, 29, 44]. These optimal trade-off solutions are referred to as *Paretooptimal solutions* (or the *Pareto front* in the objective space). It is assumed that revealing the Pareto front will better equip the decision-maker to make the final choice among these trade-offs.

In the process of searching for multiple optimal solutions on the Pareto front, we need to generate a large number of solutions, each emphasizing

different classes. This process can lead to significant model training over-57 head. Therefore, reducing this overhead is essential for transforming our 58 goal into a practical learning algorithm. To address this issue, we propose 59 the Multi-class Multi-objective Selective Ensemble (MMSE) framework. It 60 encompasses three fundamental points. 1) We incorporate selective ensem-61 ble into the multi-objective modeling. In this way, we don't have to repeat-62 edly train the entire model, but instead obtain different models through dif-63 ferent combinations of base learners. 2) We use **undersampled** datasets to 64 train base learners, which improves training efficiency. Meanwhile, the model 65 obtained by ensembling multiple base learners can cover more training sam-66 ples, which avoids the problem of information loss. 3) We undersample the 67 dataset with **different undersampling ratios**. Different undersampling 68 ratios for each class represent different rebalancing strategies. By combining 69 base learners that have heterogeneous emphases over classes, we can obtain a 70 variety of ensemble models with more diverse choices in performance across 71 different classes. 72

With straightforward objective modeling where the performance of each 73 class is modeled as an objective, we propose MMSE_{class}. However, scalability 74 is another issue that must be taken into consideration. When the number of 75 classes increases, the optimization problem becomes difficult because most 76 of the generated solutions are incomparable. Considering this, we further 77 propose a margin-based version called $MMSE_{margin}$. It optimizes common 78 performance measures by optimizing label-wise and instance-wise margins. 79 It not only reduces the number of objectives to 3 but also proves to be able 80 to optimize common performance measures. 81

82 Our contributions are summarized as follows:

- We explore the multi-class imbalance problems from a new perspective, specifically when it is difficult to determine trade-offs between classes *a priori*.
- We model the problem as a multi-objective problem, where the performance of each class is optimized as a separate objective. But more importantly, in order to improve efficiency and make the method practical, we incorporate undersampling and selective ensemble, and develop the MMSE framework.
- Considering the scalability issue when the number of classes increases, we further propose a variant of objective modeling that equips with

⁹³ margins, and analyze its optimization ability.

We show in the experiments that both MMSE_{class} and MMSE_{margin} not only achieve better performance on common performance measures, but also provide a variety of trade-offs between classes, and within an acceptable running time.

The rest of this paper is organized as follows. We start by introducing the related work in Section 2. In Section 3, we first demonstrate the problem settings, then introduce the proposed MMSE framework in detail. Theoretical analysis is provided in Section 4. In Section 5, experimental results are reported. Finally, we conclude our work in Section 6.

¹⁰³ 2. Related work

The most fundamental idea for solving class-imbalanced learning prob-104 lems is rebalancing. The methods can be roughly categorized into the fol-105 lowing three types. a) Sampling methods. These methods include random 106 sampling, synthetic sampling [4, 16], and evolutionary-based sampling meth-107 ods [11, 32]. b) Re-weighting methods. They are closely related to cost-108 sensitive learning where instances in small classes have higher misclassifica-109 tion costs [26]. c) Hybrid methods. They combine multiple techniques, such 110 as integrating sampling methods in each boosting round [5, 33], ensembling 111 multiple base learners trained on different balanced training sets [6, 25, 10]. 112

Ensemble methods naturally have applications in solving class imbalance 113 problems, because they can combine the strengths of multiple learners to 114 achieve better performance [42, 41, 43, 38]. A highly representative approach 115 is EasyEnsemble [25]. It combines undersampling with ensemble to achieve 116 effective rebalancing while avoiding information loss. In addition, selective 117 ensemble methods aim to use some base learners to achieve better results than 118 a complete ensemble [19], and can also be applied to handle class imbalance 119 problems [9]. 120

It is worth noting that, many of the imbalanced-learning methods were originally proposed for binary problems, and the binary imbalanced classification has been studied more thoroughly [35, 9]. Although many learning methods are applicable to multi-class imbalance problems, they are generally direct extensions of the binary rebalancing strategies, without considering the complex trade-offs among multiple classes [37, 19]. Usually, a learner

Measure	Formulation	Note
Average Accuracy	Avg. Acc(h) = $\frac{1}{l} \sum_{y=1}^{l} \frac{1}{ D_y } \sum_{i \in D_y} \llbracket h(\boldsymbol{x}_i) = y \rrbracket$	The average of per-class accuracy.
G-mean	$\operatorname{G-mean}(h) = \left\{ \prod_{y=1}^l \left(\frac{1}{ D_y } \sum_{i \in D_y} \llbracket h(\boldsymbol{x}_i) = y \rrbracket \right) \right\}^{\frac{1}{l}}$	The geometric mean of per-class accuracy.
macro-F1	$\text{macro-F1}(h) = \frac{1}{l} \sum_{y=1}^{l} \frac{2\sum_{i \in D_y} \llbracket h(\boldsymbol{x}_i) = y \rrbracket}{ D_y + \sum_{i \in D_y} \llbracket h(\boldsymbol{x}_i) = y \rrbracket}$	F-measure averaging on each class.
micro-F1	$\text{micro-F1}(h) = \frac{2\sum_{j=1}^{l}\sum_{i \in Dy} \llbracket h(\boldsymbol{x}_{i}) = \boldsymbol{y} \rrbracket}{ D + \sum_{j=1}^{l}\sum_{i \in Dy} \llbracket h(\boldsymbol{x}_{i}) = \boldsymbol{y} \rrbracket}$	F-measure averaging on the prediction matrix.
macro- AUC	$ \begin{array}{l} \text{macro-AUC} \left(f\right) = \frac{1}{l} \sum_{y=1}^{l} \frac{\mathcal{S}_{\text{Dyncro}}^{y}}{ D_{y} D \setminus D_{y} } \\ \mathcal{S}_{\text{macro}}^{y} = \left\{ \left(a, b\right) \in D_{y} \times \left\{D \setminus D_{y}\right\} \mid f^{\left(y\right)}\left(\boldsymbol{x}_{a}\right) \geq f^{\left(y\right)}\left(\boldsymbol{x}_{b}\right) \right\} \end{array} $	AUC averaging on each class. S_{macro} is the set of correctly ordered instance pairs considering whether the instance belongs to the corresponding class.
MAUC [14]	$\begin{aligned} \text{MAUC } (f) &= \frac{2}{l(l-1)} \sum_{i < j} \hat{A}(i, j) \\ \hat{A}(i, j) &= [\hat{A}(i \mid j) + \hat{A}(j \mid i)]/2 \\ \hat{A}(i \mid j) &= \frac{1}{ D_i D_j } \left\{ (a, b) \in D_i \times D_j \mid f^{(j)} \left(\boldsymbol{x}_a \right) \geq f^{(j)} \left(\boldsymbol{x}_b \right) \end{aligned}$	AUC averaging on each pair of classes. $\hat{A}(i \mid j)$ is the correctly ordered in- stance pairs of the <i>i</i> -th and <i>j</i> -th class based on the predicted probabilities on }the <i>i</i> -th class.

 Table 1: Definition of popular multi-class performance measures

¹²⁷ is trained based on a pre-determined rebalancing strategy, and then the re-¹²⁸ sults on a series of evaluation criteria, such as F1, G-mean, and MAUC, ¹²⁹ are reported [43]. Table 1 summarizes six performance measures commonly ¹³⁰ used in multi-class imbalance studies. However, few studies have been con-¹³¹ ducted when the evaluation criteria and the relative importance of classes ¹³² are unknown beforehand.

In this paper, we consider the performance of different classes as multiple 133 objectives. Recently, many methods have been proposed to optimize multi-134 ple objectives simultaneously while training models [23, 40, 39, 46], such as 135 simultaneously optimizing accuracy and regularization, or considering objec-136 tives related to specific tasks such as feature selection. However, they did 137 not consider the trade-offs among classes. Instead, we directly model the 138 performance of each class as an objective, and our goal is to provide different 139 trade-offs between classes for the decision-maker to make choices. This is a 140 clear difference that makes this paper a different study from existing liter-141 ature. Although the idea of modeling each class as an objective is simple, 142 making its optimization practical requires exquisite design, which is the focus 143 of our work. 144

Figure 2: An illustration of our proposed MMSE framework.

¹⁴⁵ 3. The proposed approach

146 3.1. Problem description

Given the multi-class predictor $f : \mathbb{R}^d \to \mathbb{R}^l$, where $f^{(j)}(\boldsymbol{x})$ denotes the predicted probability of instance \boldsymbol{x} on the *j*-th class. Let $h(\boldsymbol{x}) = \arg \max_j f^{(j)}(\boldsymbol{x})$ denote the predicted class. Let D denote a dataset sampled i.i.d. from distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, where $\mathcal{X} = \mathbb{R}^d$ is the feature space and $\mathcal{Y} \in \{1, 2, \ldots, l\}$ is the label space. Let D_y denote the set of sample indices with label y. $\mathbb{1}_{[\cdot]}$ is the indicator function, which returns 1 if \cdot is true and 0 otherwise.

In this paper, we consider the problem where the decision-maker's evaluation criterion is not revealed until she sees the best possible trade-off solutions. We consider the following two scenarios of the evaluation process.

Scenario I: After the Pareto front is revealed, the decision-maker decides on a certain overall performance measure. The solution that has the best validation performance on this measure is chosen and the corresponding test performance is reported. We consider the measures in Table 1 to be the possible preferences of the decision-maker.

Scenario II: This scenario covers a broader context, in which the decisionmaker may choose any solution on the Pareto front presented to her. Unlike scenario I, the decision-making process here may be a high-level consideration of the trade-offs between classes, which is hard to represent explicitly.

In this paper, we propose a multi-objective selective ensemble method that can deal with the two scenarios simultaneously. Our method not only achieves good performance in common overall performance measures, but also generates diverse trade-off solutions between classes. ¹⁶⁹ 3.2. The multi-class multi-objective selective ensemble framework

We present our framework MMSE, as illustrated in Figure 2. It incorporates selective ensemble in the multi-objective optimization to enhance training and storage efficiency, and employs undersampling with different ratios to help generate diverse solutions.

Multi-objective optimization. To explicitly consider different trade-offs between classes, we use the validation accuracy of each class as an objective, and the multi-objective problem is formulated as

$$\boldsymbol{g}(h,V) = \left(\frac{1}{|V_1|} \sum_{i \in V_1} \mathbb{1}_{[h(\boldsymbol{x}_i)=1]}, \dots, \frac{1}{|V_l|} \sum_{i \in V_l} \mathbb{1}_{[h(\boldsymbol{x}_i)=l]}\right), \quad (2)$$

where V denotes the validation set, and V_i denotes the subset of samples belonging to the *i*-th class. Usually, the solution to this multi-objective optimization problem contains many optimal classifiers h, which have their different advantages in different classes.

¹⁸¹ Selective ensemble. Let F_s denote a selective ensemble with selector vector ¹⁸² $s \in \{0, 1\}^n$, where $s_t = 1$ means that the base learner f_t is incorporated in ¹⁸³ the ensemble. If we consider soft voting to combine the base learners, the ¹⁸⁴ predicted probability of ensemble F_s on an instance x is

$$F_{\boldsymbol{s}}(\boldsymbol{x}) = rac{1}{|\boldsymbol{s}|} \sum_{t=1}^{n} s_t f_t(\boldsymbol{x}) \; ,$$

where $|\mathbf{s}| = \sum_{t=1}^{n} s_t$ represents the ensemble size. And let

$$H_{\boldsymbol{s}}(\boldsymbol{x}) = \operatorname*{arg\,max}_{j} F_{\boldsymbol{s}}^{(j)}(\boldsymbol{x})$$

denote the predicted class. In this way, the multi-objective optimization
problem becomes a search on the selector vector, i.e.,

$$\boldsymbol{g}(\boldsymbol{s}, V) = \left(\frac{1}{|V_1|} \sum_{i \in V_1} \mathbb{1}_{[H_{\boldsymbol{s}}(\boldsymbol{x}_i)=1]}, \dots, \frac{1}{|V_l|} \sum_{i \in V_l} \mathbb{1}_{[H_{\boldsymbol{s}}(\boldsymbol{x}_i)=l]}, -|\boldsymbol{s}|\right) .$$
(3)

Combining selective ensemble with multi-objective optimization leads to greatly reduced time and storage consumption. Without the design of incorporating selective ensemble, to find these solutions using a multi-objective

evolutionary algorithm, we have to search many (usually thousands of) rebalancing settings. Since for each setting we have to train a classifier, in total,
we need to train thousands of classifiers from scratch. In contrast, using the
framework we proposed, we only need to search thousands of combinations.

Generating base learners. When generating the base learners, we construct 195 multiple undersampled subsets from the training set Tr. Undersampling is 196 an efficient way to obtain rebalanced datasets with low training overhead. 197 Compared to it, oversampling has a higher training cost and may also cause 198 overfitting. The only weakness of undersampling is the possibility of discard-199 ing useful samples. But this disadvantage can be compensated for by ensem-200 bling multiple undersampled datasets, which avoids information loss [25]. 201 Based on this idea, we use each subset to train a separate classifier, and the 202 final prediction is made by combining the predictions of all the classifiers. 203 But there is a novel design in this step of our method, i.e., we undersample 204 the dataset with *different undersampling ratios*. From EasyEnsemble, we 205 know that when ensembling base learners trained on balanced subsets, the 206 ensemble performance will vary depending on the number of base learners. 207 Obviously, if the sampling ratios on different classes change for different data 208 subsets, the performance of the obtained ensemble will also exhibit more 209 diversity. As our goal is to obtain heterogeneous trade-offs among classes, 210 combining base learners with heterogeneous emphases over classes will help. 211

212 3.3. Objective modeling for many-class cases

In the previous subsection, we use the Eq. (3) version of objective mod-213 eling, where the validation accuracy of each class is modeled as objective. 214 Therefore, we name this method as $MMSE_{class}$. This type of objective mod-215 eling is flexible, and if the optimization problem is well solved, any opti-216 mal trade-off between classes can be obtained. However, when the num-217 ber of classes is large, the multi-objective problem becomes difficult to op-218 timize because most of the generated solutions are incomparable. In such 219 cases, we propose a margin-based version of objective modeling, and we 220 name the MMSE method equipped with margin-based objective modeling 221 as MMSE_{margin}. 222

The concept of margin has been long used in evaluating the model's training performance [13], showing its effectiveness in both generalization ability and robustness. There have been some new research results recently, such

as applying it to multi-label problems [36], or using its distribution to char-226 acterize classifier performance more precisely [27]. Inspired by the fact that 227 optimizing label-wise and instance-wise margins can optimize various com-228 monly used multi-label performance measures [36], we decided to optimize 229 the multi-class version of label-wise and instance-wise margins to address our 230 Scenario I. And we apply different methods to aggregate per-class margins 231 so that our method can retain certain advantages in Scenario II. Here we 232 introduce the multi-class version of label-wise and instance-wise margins. 233 The *label-wise margin* on instance x_i is defined to be 234

$$\gamma_i^{\text{label}}(f, \boldsymbol{x}_i) = \min_{y'} \left\{ f^{(y)}\left(\boldsymbol{x}_i\right) - f^{(y'\neq y)}\left(\boldsymbol{x}_i\right) \right\},\tag{4}$$

where y is the ground-truth label of instance x_i . We group the label-wise margin on the instances from the y-th class

$$\bar{\gamma}_{y}^{\text{label}}(f, V) = \frac{1}{|V_{y}|} \sum_{i \in V_{y}} \gamma_{i}^{\text{label}}(f, \boldsymbol{x}_{i}) .$$
(5)

The *instance-wise margin* on label y is defined to be

$$\gamma_y^{\text{inst}}(f, V) = \min_{a, b} \left\{ f^{(y)}\left(\boldsymbol{x}_a\right) - f^{(y)}\left(\boldsymbol{x}_b\right) \mid a \in V_y, b \in V \setminus V_y \right\}.$$
(6)

Instance-wise margin is already defined on each class. But in practice, using the minimum margin of all pairs of instances is not robust, since noise or difficult instances may easily cause a meaningless value of γ_y^{inst} . Therefore we modify Eq. (6) into a more robust mean version

$$\bar{\gamma}_{y}^{\text{inst}}(f, V) = \left\{ \frac{1}{|V_{y}|} \sum_{a \in V_{y}} f^{(y)}\left(\boldsymbol{x}_{a}\right) - \frac{1}{|V \setminus V_{y}|} \sum_{b \in V \setminus V_{y}} f^{(y)}\left(\boldsymbol{x}_{b}\right) \right\}.$$
 (7)

242

The objective vector for $MMSE_{margin}$ is defined as

$$\boldsymbol{g}(\boldsymbol{s}, V) = \left(\gamma^{\text{label}}\left(F_{\boldsymbol{s}}, V\right), \gamma^{\text{inst}}\left(F_{\boldsymbol{s}}, V\right), -|\boldsymbol{s}|\right), \tag{8}$$

243 where

$$\gamma^{\text{label}}\left(F_{\boldsymbol{s}},V\right) = \frac{1}{l} \sum_{y} \bar{\gamma}_{y}^{\text{label}}\left(F_{\boldsymbol{s}},V\right),\tag{9}$$

$$\gamma^{\text{inst}}(F_{\boldsymbol{s}}, V) = \min_{y} \bar{\gamma}_{y}^{\text{inst}}(F_{\boldsymbol{s}}, V) \,. \tag{10}$$

Algorithm 1 MMSE

Input: Training data Tr, validation data V, objective modeling g, evaluation criterion *eval* denoting the decision making process.

Output: An ensemble.

- 1: Train base learners $\{h_i\}_{i=1}^n$ using different training samples obtained by different sampling strategies.
- 2: Use NSGA-II to solve the problem $\arg \max_{s} g(s, V)$ obtain a set of Pareto optimal solutions.
- 3: Present the optimal ensembles to the decision-maker and she selects an ensemble according to *eval*.

We use the average and minimum for $\bar{\gamma}_{y}^{\text{label}}$ and $\bar{\gamma}_{y}^{\text{inst}}$ respectively to emphasize different aspects of performance across classes. With the objective modeling in Eq. (8), the number of objectives is limited to 3, no matter how many classes there are. Meanwhile, the label-wise and instance-wise margins are related to common performance measures, and the third objective -|s|benefits the theoretical analysis. An analysis for MMSE_{margin} is provided in Section 4.

The pseudocode of MMSE is shown in Algorithm 1. It applies to both 251 $MMSE_{class}$ and $MMSE_{margin}$, the only difference is the objective modeling 252 g. NSGA-II [8] is adopted as the multi-objective optimization algorithm. 253 It is a well-established multi-objective evolutionary algorithm suitable for 254 such combinatorial multi-objective problems. It is suitable for $MMSE_{margin}$ 255 with only three objectives and can achieve a theoretical guarantee of opti-256 mization time complexity as will be shown in Section 4. For consistency, 257 we also use NSGA-II for $MMSE_{class}$. The evaluation criterion *eval* denotes 258 the decision-maker's decision process after obtaining a set of Pareto-optimal 259 solutions. When presenting the obtained solutions to the decision-maker, 260 we can use multi-dimensional data visualization methods, such as parallel 261 coordinates [20, 47], where Step C in Figure 2 is an example. 262

²⁶³ 4. Theoretical analysis

264 4.1. Theoretical results

In this section, we prove that $MMSE_{margin}$ can optimize common multiclass performance measures with approximation guarantee. Detailed proofs for theorems will be given in Section 4.2. As we have reduced the number of objectives in MMSE_{margin}, we need to analyze the expressiveness of the objective modeling. We now show that if the multi-class version of label-wise margin and instance-wise margins are optimized, then common multi-class imbalance measures can be optimized.

Proposition 1. If all the label-wise margins on dataset D are positive, then
Average Accuracy, G-mean, macro-F1, micro-F1 are optimized.

Proposition 2. If all the instance-wise margins on dataset D are positive, then macro-AUC and MAUC are optimized.

Then we analyze the approximation guarantee of $MMSE_{margin}$, with NSGA-276 II being its multi-objective optimization algorithm. This analysis ensures 277 that the two objectives of MMSE_{margin} can be optimized and have a time 278 complexity guarantee. Let the selector vector \boldsymbol{s} represent a subset S of V by 279 assigning $s_i = 1$ if the *i*-th base learner of V is in S and $s_i = 0$ otherwise. 280 Obviously, γ^{label} and γ^{inst} are two set functions that are both non-monotone³ 281 and non-submodular⁴. Therefore, we introduce the ϵ -approximate mono-282 tonicity in Definition 1 and β -approximate submodularity in Definition 2 to 283 characterize how close a set function q is to monotonicity and submodularity, 284 respectively. 285

Definition 1 (ϵ -Approximate Monotonicity [21]). Let $\epsilon \geq 0$. A set function $g: 2^V \to \mathbb{R}$ is ϵ -approximately monotone if for any $S \subseteq V$ and $v \notin S$.

$$g(S \cup \{v\}) \ge g(S) - \epsilon.$$

It is easy to see that g is monotone iff $\epsilon = 0$.

Definition 2 (β -Approximate Submodularity [7]). Let $0 \leq \beta \leq 1$. A set function $g: 2^V \to \mathbb{R}$ is β -approximately submodular if for any $S, T \subseteq V$ and $v \in V$,

$$\sum_{v \in T \setminus S} (g(S \cup \{v\}) - g(S)) \ge \beta(g(S \cup T) - g(S)).$$

It is easy to see that g is submodular iff $\beta = 1$.

³A set function $g: 2^n \to \mathbb{R}$ is monotone if $\forall X \subseteq Y \subseteq V, g(X) \leq g(Y)$.

⁴A set function g is submodular if it satisfies the "diminishing returns" property, i.e., $\forall X \subseteq Y \subseteq V, \sum_{v \in Y \setminus X} (g(X \cup \{v\}) - g(X)) \ge g(X \cup Y) - g(X).$

Assume the solutions in the first nondominated front will not be excluded from the population by NSGA-II. Let ϵ_1 and β_1 be the approximate monotonicity and approximate submodularity parameter of γ^{label} , respectively, ϵ_2 and β_2 be the approximate monotonicity and approximate submodularity parameter of γ^{inst} , respectively. Proposition 3 gives the approximation guarantee of MMSE_{margin} on γ^{label} and γ^{inst} .

Proposition 3. For the selective ensemble problem defined in Eq. (8) for MMSE_{margin}, the expected number of iterations of NSGA-II until finding a solution \mathbf{s} with $|\mathbf{s}| \leq m$ and $\gamma^{\text{label}} \geq (1 - e^{-\beta_1}) \cdot (\text{OPT}^{\text{label}} - m\epsilon_1)$, and a solution \mathbf{t} with $|\mathbf{t}| \leq m$ and $\gamma^{\text{inst}} \geq (1 - e^{-\beta_2}) \cdot (\text{OPT}^{\text{label}} - m\epsilon_2)$ is $O(n(\log n + m))$, where $\text{OPT}^{\text{label}}$ and OPT^{inst} denote the optimal value of γ^{label} and the optimal value of γ^{inst} , respectively.

³⁰⁵ *Proof sketch.* We first prove that with the approximate monotonicity and ³⁰⁶ approximate submodularity assumption, we can always find an element to ³⁰⁷ add to a set with certain improvements. Then by tracking the probability ³⁰⁸ that such an improvement happens on the best solution in the population, ³⁰⁹ we count the expected number of iterations required by NSGA-II to achieve ³¹⁰ the desired approximate guarantee.

Remark 1. As Proposition 3 demonstrates, the multi-objective selective ensemble procedure of $\text{MMSE}_{\text{margin}}$ can achieve the approximate optimal value of average label-wise margin γ^{label} and minimum instance-wise margin γ^{inst} . These two margins are statistics of label-wise margin γ^{label}_i and instance-wise margin γ^{inst}_y . And from Proposition 1 and Proposition 2 we know that, if γ^{label}_i and γ^{inst}_y are optimized on all instances and all classes, common multi-class performance measures are optimized.

- 318 4.2. Proofs
- 319 4.2.1. Proof of Proposition 1

Proof. If label-wise margin is positive on an instance \boldsymbol{x}_i , we have $f^{(y)}(\boldsymbol{x}_i) > f^{(y'\neq y)}(\boldsymbol{x}_i)$. Therefore,

$$\forall \boldsymbol{x}_i, h(\boldsymbol{x}_i) = \arg \max_j f^{(j)}(\boldsymbol{x}_i) = y$$
.

Then we have $\forall y, \frac{1}{|D_y|} \sum_{i \in D_y} \mathbb{1}_{[h(\boldsymbol{x}_i)=y]} = 1$. Hence, Avg. Acc(h) = 1, G-mean(h) = 1.

We also have $\sum_{i \in D_y} \mathbb{1}_{[h(\boldsymbol{x}_i)=y]} = |D_y|$, therefore

macro-F1(h) =
$$\frac{1}{l} \sum_{y=1}^{l} \frac{2|D_y|}{|D_y| + |D_y|} = 1,$$

micro-F1(h) =
$$\frac{2\sum_{j=1}^{l} |D_y|}{|D| + \sum_{j=1}^{l} |D_y|} = \frac{2|D|}{|D| + |D|} = 1.$$

322

323 4.2.2. Proof of Proposition 2 Proof. If instance-wise margin on label y is positive, then

$$f^{(y)}(\boldsymbol{x}_{a}) > f^{(y)}(\boldsymbol{x}_{b}), \forall a \in D_{y}, b \in D \setminus D_{y}$$

324 Hence,

$$\begin{aligned} \mathcal{S}_{\text{macro}}^{y} &= \left\{ (a,b) \in D_{y} \times \{D \setminus D_{y}\} \mid f^{(y)}\left(\boldsymbol{x}_{a}\right) \geq f^{(y)}\left(\boldsymbol{x}_{b}\right) \right\} \\ &= \left|D_{y}\right| \left|D \setminus D_{y}\right| \,. \end{aligned}$$

If it holds for all y, then

macro-AUC
$$(f) = \frac{1}{l} \sum_{y=1}^{l} \frac{S_{\text{macro}}^y}{|D_y| |D \setminus D_y|} = 1$$
.

We also have

$$\hat{A}(i \mid j) = \frac{1}{|D_i||D_j|} \left\{ (a, b) \in D_i \times D_j \mid f^{(j)}(\boldsymbol{x}_a) \ge f^{(j)}(\boldsymbol{x}_b) \right\}$$

=1,

327 and

$$\hat{A}(i,j) = [\hat{A}(i \mid j) + \hat{A}(j \mid i)]/2 = 1 .$$
Therefore, MAUC $(f) = \frac{2}{l(l-1)} \sum_{i < j} \hat{A}(i,j) = 1.$

329 4.2.3. Proof of Proposition 3

Proof. The proof relies on Lemma 1 and Lemma 2, which are inspired by
[31]. The detailed proofs of these lemmas are presented later.

Lemma 1. Assume that a set function g is ϵ -approximately monotone as in Definition 1 and β -approximately submodular as in Definition 2. For any $s \in \{0,1\}^n$ with |s| < m, there exists one element $v \notin s$ such that

$$g(\boldsymbol{s} \cup \{v\}) - g(\boldsymbol{s}) \ge \beta/m \cdot (\text{OPT} - g(\boldsymbol{s})) - \beta \cdot \epsilon$$

³³⁵ where *m* is the size constraint.

Assume that the number of selected base learners does not exceed m, Lemma 1 proves that for any $s \in \{0,1\}^n$ with |s| < m, there always exists another element, the inclusion of which can bring an improvement on groughly proportional to the current distance to the optimum.

Lemma 2. To maximize an ϵ -approximately monotone and β -approximately submodular set function g, the expected number of iterations of the NSGA-II until finding a solution s with $|s| \leq m$ and $g(s) \geq (1 - e^{-\beta}) \cdot (\text{OPT} - m\epsilon)$ is $O(n(\log n + m))$, where OPT denotes the optimal value.

Lemma 2 proves the approximation guarantee of NSGA-II on any ϵ approximately monotone and β -approximately submodular set function g. As in previous analyses (e.g., [2, 12]), we may assume that there is a set S_d of m "dummy" elements whose marginal contribution to any set is 0, i.e., for any $S \subseteq V, g(S) = g(S \setminus S_d)$.

By substituting the parameters ϵ_1 and β_1 of γ^{label} as well as ϵ_2 and β_2 of γ^{inst} into Lemma 2, the theorem can be directly obtained.

Proof of Lemma 1. Let \mathbf{s}^* be an optimal solution containing at most mitems, i.e., $\mathbf{s}^* = \arg \max_{\mathbf{s} \in \{0,1\}^n, |\mathbf{s}| \le m} g(\mathbf{s})$, and OPT denote the optimal value, i.e., $g(\mathbf{s}^*) = \text{OPT}$. We denote the elements in $\mathbf{s} \setminus \mathbf{s}^*$ by $u_1^*, u_2^*, \cdots, u_t^*$, where $t = |\mathbf{s} \setminus \mathbf{s}^*|$. Note that t < m as $|\mathbf{s}| < m$. Because g is ϵ -approximately monotone, we have

$$g(\boldsymbol{s}^* \cup \boldsymbol{s}) = g(\boldsymbol{s}^* \cup \{u_1^*, u_2^*, \cdots, u_t^*\})$$

$$\geq g(\boldsymbol{s}^* \cup \{u_1^*, u_2^*, \cdots, u_{t-1}^*\}) - \epsilon$$

$$\geq \cdots \geq g(\boldsymbol{s}^*) - t\epsilon$$

$$\geq g(\boldsymbol{s}^*) - m\epsilon, \qquad (11)$$

where the first three inequalities hold by Definition 1. We denote the elements in $s^* \setminus s$ by $v_1^*, v_2^*, \dots, v_l^*$, where $l = |s^* \setminus s| \le m$. Then, we have

$$g(s^{*}) - g(s) - m\epsilon \leq g(s \cup s^{*}) - g(s) = g(s \cup \{v_{1}^{*}, v_{2}^{*}, \cdots, v_{l}^{*}\}) - g(s) \leq \frac{1}{\beta} \sum_{j=1}^{l} (g(s \cup \{v_{j}^{*}\}) - g(s)),$$
(12)

where the first inequality holds by Eq. (11), the first equality holds by the definition of $s^* \setminus s$, and the last inequality holds by Definition 2. Let $v^* =$ arg max_{$v \in V/s$} $g(s \cup \{v\})$. Eq. (12) implies that

$$g(\boldsymbol{s}^*) - g(\boldsymbol{s}) - m\epsilon \le l/\beta \cdot (g(\boldsymbol{s} \cup \{v^*\}) - g(\boldsymbol{s})).$$

Due to the existence of m dummy elements and $|\mathbf{s}| < m$, there must exist one dummy element $v \notin \mathbf{s}$ satisfying $g(\mathbf{s} \cup \{v\}) - g(\mathbf{s}) = 0$; this implies that $g(\mathbf{s} \cup \{v^*\}) - g(\mathbf{s}) \ge 0$. As $l \le m$, we have $g(\mathbf{s}^*) - g(\mathbf{s}) - m\epsilon \le m/\beta \cdot (g(\mathbf{s} \cup \{v^*\}) - g(\mathbf{s})))$, leading to $g(\mathbf{s} \cup \{v^*\}) - g(\mathbf{s}) \ge \beta/m \cdot (\text{OPT} - g(\mathbf{s})) - \beta \cdot \epsilon$. \Box

Proof of Lemma 2. We divide the optimization process into two phases: (1) starts from an initial population P with constant size N and finishes after including the special solution **0** (i.e., empty set) in population; (2) starts after phase (1) and finishes after finding a solution with the desired approximation guarantee.

For phase (1), we consider the minimum number of 1-bits of the solutions 370 in the population P, denoted by J_{min} . That is, $J_{min} = \min\{|s| \mid s \in P\}$. 371 Assume that currently $J_{min} = i > 0$, and let **s** be a corresponding solution, 372 i.e., $|\mathbf{s}| = i$. It is easy to see that J_{min} cannot increase because \mathbf{s} cannot be 373 weakly dominated by a solution with more 1-bits. In each iteration of NSGA-374 II, to decrease J_{min} , it is sufficient to select s and flip only one 1-bit of s by 375 the bit-wise mutation operator. This is because the newly generated solution 376 s' now has the smallest number of 1-bits (i.e., |s'| = i - 1) and no solution 377 in P can dominate it; thus it will be included into P. In our setting, the 378 bit-wise mutation is performed with a probability of 1/2, randomly selecting 379 a parent solution and independently flipping each bit with a probability of 380 1/n. Thus, the probability of selecting **s** from the population and flipping 381 only one 1-bit of s by bit-wise mutation is $\frac{1}{2} \cdot \frac{1}{N} \cdot \frac{i}{n} (1 - 1/n)^{n-1} \geq \frac{i}{2enN}$, 382

since the probability of operating bit-wise mutation is $\frac{1}{2}$, the probability of selecting \boldsymbol{s} is $\frac{1}{N}$ due to uniform selection and \boldsymbol{s} has i 1-bits.

In each iteration of NSGA-II, there are N offspring solutions to be generated. Thus, the probability of decreasing J_{min} by at least 1 in each iteration of NSGA-II is at least $N \cdot \frac{i}{2enN} = \frac{i}{2en}$. Note that $J_{min} \leq n$. We can then get that the expected number of iterations of phase (1) (i.e., J_{min} reaches **0**) is at most $\sum_{i=1}^{n} \frac{2en}{i} = O(n \log n)$. Note that the solution **0** will always be kept in P once generated, since it has the smallest subset size 0 and no other solution can weakly dominate it.

For phase (2), we consider a quantity J_{max} , which is defined as

$$J_{max} = \max\{j \in \{0, 1, \cdots, m\} \mid \exists s \in P :$$
$$|s| \le j \land g(s) \ge \left(1 - \left(1 - \frac{\beta}{m}\right)^j\right) \cdot (\text{OPT} - m\epsilon)\}.$$

That is, J_{max} denotes the maximum value of $j \in \{0, 1, \dots, m\}$ such that in 393 the population P, there exists a solution s with $|s| \leq j$ and $g(s) \geq (1 - (1 - j))$ 394 β/m^{j} · (OPT – $m\epsilon$). The solution that satisfies this condition may not be 395 unique in the population, but there must be one in the first front. We consider 396 the solution s in the first front of NSGA-II. We analyze the expected number 397 of iterations until $J_{max} = m$, which implies that there exists one solution s398 in P satisfying that $|s| \leq m$ and $g(s) \geq (1 - (1 - \beta/m)^m) \cdot (\text{OPT} - m\epsilon) \geq$ 399 $(1 - e^{-\beta}) \cdot (\text{OPT} - m\epsilon)$. That is, the desired approximation guarantee is 400 reached. 401

The current value of J_{max} is at least 0, since the population P contains 402 the solution $\mathbf{0}$, which will always be kept in P once generated. Assume that 403 currently $J_{max} = i < m$. Let s be a corresponding solution with the value 404 i, i.e., $|\mathbf{s}| \leq i$ and $g(\mathbf{s}) \geq (1 - (1 - \beta/m)^i) \cdot (\text{OPT} - m\epsilon)$. It is easy to 405 see that J_{max} cannot decrease because cleaning s from P implies that s is 406 weakly dominated by a newly generated solution \hat{s} , which must satisfy that 407 $|\hat{s}| \leq |s|$ and $g(\hat{s}) \geq g(s)$. By Lemma 1, we know that flipping one specific 408 0-bit of s (i.e., adding a specific element) can generate a new solution s', 409 which satisfies $g(s') - g(s) \ge \frac{\beta}{m}(\text{OPT} - g(s)) - \beta \epsilon$. Then, we have 410

$$g(\mathbf{s}') \ge \left(1 - \frac{\beta}{m}\right)g(\mathbf{s}) + \frac{\beta}{m}\text{OPT} - \beta\epsilon$$
$$\ge \left(1 - \left(1 - \frac{\beta}{m}\right)^{i+1}\right) \cdot (\text{OPT} - m\epsilon),$$

where the last inequality is derived by $q(\mathbf{s}) > (1 - (1 - \beta/m)^i) \cdot (\text{OPT} - m\epsilon)$. 411 After generating s', it can be guaranteed that there must be a solution weakly 412 dominant s' in the first front, and $J_{max} \ge i + 1$. Thus, J_{max} can increase by 413 at least 1 in one iteration with probability at least $N \cdot \frac{1}{N} \cdot \frac{1}{2} \cdot \frac{1}{n} (1 - \frac{1}{n})^{n-1}$, where 414 $N \cdot \frac{1}{N}$ is the expectation of selecting s as a parent solution when the NSGA-415 II generates N offspring solutions in each iteration, $\frac{1}{2}$ is the probability of 416 operating bit-wise mutation to the parent solution s and $\frac{1}{n}(1-\frac{1}{n})^{n-1}$ is the 417 probability of flipping a specific bit of \boldsymbol{s} while keeping other bits unchanged. 418 This implies that it needs at most 2en expected number of iterations to 410 increase J_{max} . Thus, after at most 2emn = O(mn) iterations in expectation, 420 J_{max} must have reached m. 421

Then, by summing up the expected number of iterations of two phases, we get that the expected number of iterations of NSGA-II for finding a solution s with $|s| \leq m$ and $g(s) \geq (1 - e^{-\beta}) \cdot (\text{OPT} - m\epsilon)$ is $O(n(\log n + m))$.

425 5. Experiments

In this section, we show with experiments that our methods can efficiently generate many diverse and highly competitive classification models.

428 5.1. Experimental setup

429 5.1.1. Compared methods

Considering that our methods employ multiple rebalancing strategies (specifically, all are forms of undersampling) and decision tree ensembles, we select compared methods that share these key components. The compared methods must be capable of handling multi-class problems. Unlike our methods, which offer a wide range of choices for decision-makers, existing methods can only use predetermined rebalancing strategies and offer only one solution.

We compare our proposed methods MMSE_{class} and MMSE_{margin} to the following six state-of-the-art ensemble-based multi-class imbalanced learning methods.

SMOTE [4]: It is a synthesized oversampling algorithm. We oversample all the other classes to have the same training samples as the majority class. Then we use multi-class AdaBoost [15] classifier on the rebalanced dataset.

- EasyEnsemble [25]: It uses undersampling without replacement to generate multiple balanced training subsets and trains a multi-class AdaBoost on each of them, then combines them.
- BalancedRF [6]: It uses undersampling with replacement to generate multiple balanced subsets first, then trains a decision tree with random feature selection on each of the subsets, then combines them.
- SMOTEBoost [5]: It adds a step of synthesized oversampling to make
 a balanced training set in each round of boosting. We extend it to
 multi-class cases in a way similar to multi-class AdaBoost.
- MDEP [37]: It is a multi-objective selective ensemble method that
 simultaneously optimizes validation error, ensemble size, and margin
 distribution. We use rebalanced base learners as input.
- DEP [19]: It is a two-stage selective ensemble method that first optimizes the combination error and then solely optimizes the validation error. We use rebalanced base learners as input.

459 5.1.2. Datasets

We conduct experiments on ten multi-class datasets, including seven LIB-SVM datasets [3], one UCI dataset, and two real-world application datasets. The number of classes varies from 3 (*dna*) to 26 (*letter*). The number of features varies from 6 (*car*) to 2565 (*miRNA*). Table 2 records the number of training instances of each class. In the last column we show the imbalance rate of each dataset, which is calculated by dividing the number of samples in the largest class by the number of samples in the smallest class.

⁴⁶⁷ Among the benchmark datasets, *car*, *dna* is naturally imbalanced, and ⁴⁶⁸ *vehicle*, *satimage*, *pendigits*, *usps*, *letter*, *segment* are artificially made imbal-⁴⁶⁹ anced.

The real-world dataset *acoustic* is naturally imbalanced. The task aims at 470 predicting the function of an acoustic system. The dataset has 21 continuous 471 features, indicating the angle of the placements of 21 acoustic units that 472 determine the function of the system. The four classes are namely *amplify*, 473 *minify, cage, harvest.* The first two classes mean that the sound will decrease 474 or increase inside the acoustic system. *cage* means there is a sharp decrease in 475 the sound field that the system becomes a cage to shield from the sound [34]. 476 harvest means the energy is greatly magnified in a small area that it can 477

Dataset	Number of training instances in each class	Imbalance rate
car	[307 55 968 52]	18.6
vehicle	[170 140 110 80]	2.1
dna	[507 487 1074]	2.2
satimage	[993 486 956 414 425 809]	2.4
pendigits	$[700 \ 600 \ 500 \ 400 \ 300 \ 200 \ 100 \ 70 \ 50 \ 30]$	23.3
usps	$[800 \ 600 \ 400 \ 400 \ 300 \ 200 \ 100 \ 80 \ 60 \ 50]$	16
letter	$[520\ 500\ 480\ 460\ 440\ 420\ 400\ 380\ 360\ 340\ 320\ 300$	26
	280 260 240 220 200 180 160 140 120 100 80 60 40 20]	
segment	$[264\ 210\ 160\ 110\ 80\ 50\ 30]$	8.8
acoustic	[2477 723 2674 526]	5.1
miRNA	[2207 256 92 92 92 92 92 92 70 64]	34.5

⁴⁷⁸ be captured in the form of electricity [1, 28], meanwhile can be dangerous ⁴⁷⁹ when the energy focusing is undesired. The extreme cases *cage* and *harvest* ⁴⁸⁰ naturally happen less often.

The real-world dataset *miRNA* is naturally imbalanced. Circulating mi-481 croRNAs (miRNAs) are promising biomarkers that could be applied to early 482 detection of cancer. We experimented with data processed from serum 483 miRNA profiles [45], which has 2565 features, each one of which denotes 484 the expression level of certain miRNA⁵. The ten classes are *Healthy*, *Ovar*-485 ian Cancer, Breast Cancer, Colorectal Cancer, Gastric Cancer, Lung Cancer, 486 Pancreatic Cancer, Sarcoma, Esophageal Cancer and Hepatocellular Carci-487 noma. 488

489 5.1.3. Configurations

Experiments were run on a Windows 10 machine with a 3.40 GHz Intel i7-13700KF CPU and 32 GB memory. Each dataset is randomly partitioned into training and test sets, and this partitioning process is repeated 10 times independently and the average result is reported. In the training process of all the methods, the training set is further partitioned into model training set and validation set with ratio 3:1 and with stratified sampling, where the validation set is used for selective ensemble and model selection.

⁵The miRNA data can be downloaded from https://www.ncbi.nlm.nih.gov/geo/ query/acc.cgi?acc=GSE106817

For the proposed methods $MMSE_{class}$ and $MMSE_{margin}$, 100 data sub-497 sets are generated each randomly using 'not minority' or 'middle' sampling 498 strategies, with 'not minority' we undersample all the other classes to have 499 the same training instances as the minority class, and with 'middle' we first 500 randomly select a class, then undersample classes bigger than that class to 501 have the same number of training instances as that class. Therefore, a class 502 has different undersampling rates in different subsets. For each data sub-503 set, the base learner is randomly chosen from an Adaboost with 10 trees 504 or a random forest with 5 trees. The population size of NSGA-II is set to 505 100, and the maximum number of generations is 100. When generating new 506 solutions, we randomly perform crossover or mutation with probability 0.5507 respectively. When doing crossover, we randomly select two parent solutions 508 uniformly, and randomly select the position of encodings to combine them 509 into a new solution. When performing mutation, we randomly select a parent 510 solution and operate a bit-wise mutation that independently flips each bit of 511 solution with probability 1/n. Considering the estimation of performance on 512 the validation set is not accurate, inspired by PONSS [30] that deals with 513 noisy problems, we use a domination strategy with a threshold. 514

The hyperparameters of the compared methods are selected based on the 515 performance on the validation set. Specifically, we rank the performance of 516 each hyperparameter value, and then select the hyperparameter with the best 517 average rank on the six performance measures. The number of neighbors in 518 SMOTE is selected from $\{3, 5\}$. The number of base learners in EasyEnsem-519 ble is selected from $\{10, 20, 50\}$ and the number of trees in each Adaboost 520 is set to 10. The number of decision trees in BalancedRF is selected from 521 $\{10, 20, 50\}$. The maximum number of base learners in SMOTEBoost is se-522 lected from $\{10, 20, 50\}$. As one of the objectives of MMSE is to reduce the 523 size of ensemble, the number of base learners output by MMSE is less than 524 50. The above settings ensure that the obtained models contain roughly the 525 same number of individual learners. For MDEP, the individual learners are 526 the same as MMSE, the population size is 100 and the maximum number 527 of generations is 100. For DEP, the data subsets are generated the same as 528 MMSE, the base learners are decision trees. The maximum number of gener-520 ations in each stage is 50, and the population size is 100 for both stages. This 530 setting ensures that the total number of fitness evaluations during MDEP and 531 DEP is the same as that of MMSE. 532

533 5.2. Results and discussion

⁵³⁴ We show that our proposed methods are superior in both Scenario I and ⁵³⁵ Scenario II decision-making processes.

536 5.2.1. Scenario I

After MMSE_{class} or MMSE_{margin} obtains a collection of diverse optimal solutions, we examine them with varied performance measures as described in Section 3.1. In detail, we choose the best ensemble on the validation set under each measure and report the corresponding result on the test set. And for the compared methods that each generate a single model only, we simply report the model performance on all six measures.

Table 3 and Table 4 show the results on six common performance measures, where the best result on each dataset and each measure is bolded. From the experimental results, our methods MMSE_{class} and MMSE_{margin} outperform other methods in all evaluation metrics on almost all the datasets, and obtain very competitive results on the others.

Specifically, on *letter* dataset, MMSE_{margin} has a better average score than 548 $MMSE_{class}$ on all the performance measures. This is because *letter* has 26 549 classes, which is a relatively large number. For $MMSE_{class}$, this means the 550 number of objectives is large and the optimization process becomes difficult. 551 At this point, MMSE_{margin} is able to perform well because the number of ob-552 jectives remains unchanged. This demonstrates that the objective modeling 553 in $MMSE_{margin}$, which incorporates margin to aggregate the performances of 554 the classes, is proved to be successful. On the other hand, $MMSE_{class}$ has its 555 own advantages. For example, on *acoustic* dataset, which has only 4 classes. 556 $MMSE_{class}$ outperforms $MMSE_{margin}$ on all the measures. 557

To show a summary of the compared methods on all datasets, Figure 3 558 plots the average rank of each method on each performance measure. Accord-559 ing to the Friedman-Nemenyi test at significance level 0.1, we can observe 560 that 1) Our methods $MMSE_{class}$ and $MMSE_{margin}$ achieve the best average 561 rank on all the performance measures, and they are roughly equally good. 2) 562 MDEP, BalancedRF and SMOTE are significantly worse than our methods 563 on all the performance measures. 3) Compared with DEP, SMOTEBoost, 564 and EasyEnsemble, our methods have no significant advantage, but have bet-565 ter average rank on all the performance measures. This indicates the high 566 competitiveness of our method on these measures, and in Section 5.2.2, we 567 will further show the richness of the solutions we provide. 568

Table 3: Experimental results on benchmark datasets of common performance measures. The results are shown in mean \pm std.(rank) of 10 times of running. The smaller the rank, the better the performance. The best accuracy is highlighted in bold type. An entry is marked with a bullet '•' if the method is significantly worse than MMSE_{class} or MMSE_{margin} based on the Wilcoxon rank-sum test with confidence level 0.1.

Dataset Method SMOTE						
SMOTE	avg. acc	G-mean	F1-macro	F1-micro	$\operatorname{macro-AUC}$	MAUC
	0.912±0.018(6)●	0.908±0.018(6)●	0.909±0.011(4)●	0.953±0.013(3)	0.967±0.017(8)●	0.962±0.020(8)●
EasyEnsemble	0.911±0.017(7)●	0.908±0.017(7)●	0.797±0.032(7)●	0.844±0.019(7)●	0.976±0.005(6)●	0.989±0.003(5)●
BalancedRF	0.918±0.024(5)●	0.915±0.024(5)●	0.833±0.041(6)●	0.873±0.021(6)●	0.979±0.005(5)●	0.988±0.005(6)●
SMOTEBoost	0.928±0.038(4)●	0.923±0.043(4)●	0.939±0.034(2)	0.968±0.017(1)	0.997±0.002(1)	0.995±0.003(4)●
car MDEP	0.884±0.027(8)●	0.880±0.029(8)●	0.796±0.068(8)●	0.843±0.055(8)●	0.967±0.014(7)●	0.980±0.008(7)
DEP	0.949+0.016(3)	$0.948 \pm 0.016(3)$	0.907+0.022(5)●	0.930+0.019(5)	0.994+0.003(4)	$0.997 \pm 0.002(3)$
MMSE _{place} (ours)	$0.957 \pm 0.023(2)$	0.956±0.023(2)	$0.929 \pm 0.030(3)$	0.953+0.016(4)	0.996±0.003(3)	$0.998 \pm 0.002(2)$
$MMSE_{margin}(ours)$	$0.964 \pm 0.020(1)$	$0.963 \pm 0.021(1)$	0.945±0.024(1)	$0.962 \pm 0.016(2)$	$0.997 \pm 0.002(2)$	0.998±0.002(1)
SMOTE	0.661±0.041(8)●	0.641+0.044(8)	0.666+0.039(8)	0.660±0.041(8)●	0.774+0.027(8)	0.774+0.027(8)
EssvEnsemble	0.720±0.021(5)	0.680±0.041(6)=	0.721+0.022(5)	0.726±0.021(5)	0.010±0.008(2)	0.020+0.008(1)
BalancedBF	$0.729 \pm 0.031(5)$ $0.727 \pm 0.024(6)$	$0.039 \pm 0.041(0)$	0.721±0.035(5)	0.725±0.031(5)	$0.919 \pm 0.008(2)$	0.920±0.008(1)
SMOTEBoost	$0.727 \pm 0.024(0)$	$0.092 \pm 0.034(3)$	$0.720 \pm 0.020(0)$	$0.725 \pm 0.024(0)$	0.909±0.008(0)	0.915±0.003(0)
vehicle MDEP	0.737±0.020(2)	0.704±0.032(1)	0.732±0.023(1)	0.735±0.021(1)	0.914±0.011(3)	0.915±0.011(3)
DED	0.899±0.018(7)	0.662±0.026(7)	0.090±0.019(7)	0.897±0.017(7)	0.895±0.009(7)	0.893 ± 0.009(7)
MMSE (ours)	0.730±0.021(4)	0.692±0.033(4)	0.724±0.023(4)	0.728 ± 0.022(4)	0.917±0.007(4)	0.918 ± 0.007(4)
MMSE _{class} (ours)	0.738±0.032(1)	0.698±0.041(2)	0.731±0.031(2)	0.734±0.030(2)	0.919±0.009(1)	0.919±0.009(2)
MMSE _{margin} (ours)	0.732±0.027(3)	0.696±0.037(3)	0.728±0.026(3)	$0.732 \pm 0.025(3)$	0.918±0.008(3)	0.919±0.007(3)
SMOTE	$0.882 \pm 0.015(8) \bullet$	$0.881 \pm 0.016(8) \bullet$	0.879±0.015(8)●	0.893±0.014(8)●	0.918±0.022(8)●	0.917±0.022(8)
EasyEnsemble	0.938±0.006(4)●	0.937±0.006(4)●	0.923±0.007(6)●	0.928±0.007(6)●	0.991±0.002(4)●	0.992±0.002(4)
BalancedRF	0.933±0.011(6)●	0.932±0.011(5)●	0.925±0.011(5)●	0.933±0.009(5)●	0.989±0.002(6)●	0.989±0.002(5)
dno	0.933±0.012(5)●	0.932±0.012(6)●	0.931±0.011(4)	0.939±0.011(3)	0.989±0.004(5)●	0.989±0.003(6)
dha MDEP	0.920±0.008(7)●	0.919±0.008(7)●	0.906±0.013(7)●	0.913±0.013(7)●	0.982±0.003(7)●	0.982±0.003(7)
DEP	0.942±0.007(2)	0.942±0.007(2)	0.932±0.007(2)	0.938±0.007(4)	0.992±0.002(3)	0.992±0.002(3)
$MMSE_{class}(ours)$	0.944±0.007(1)	0.943±0.007(1)	0.934±0.009(1)	0.941±0.009(1)	0.993±0.002(2)	0.993±0.002(2)
$MMSE_{margin}(ours)$	0.940±0.009(3)	0.940±0.009(3)	0.932±0.012(3)	0.939±0.011(2)	0.993±0.001(1)	0.993±0.001(1)
SMOTE	0.825±0.011(8)●	0.814±0.015(8)●	0.824±0.010(8)●	0.847±0.008(8)●	0.897±0.006(8)●	0.895±0.007(8)
EasyEnsemble	$0.892 \pm 0.010(4)$	0.888±0.011(4)	0.887±0.009(4)●	0.901±0.008(5)●	0.988±0.002(4)	0.987±0.002(4)
BalancedRF	0.885±0.010(5)●	0.880±0.012(5)●	0.884±0.009(6)●	0.900±0.008(6)●	0.986±0.002(6)●	0.986±0.002(6)
. SMOTEBoost	0.878±0.008(6)●	0.861±0.011(7)●	0.886±0.008(5)●	0.909±0.007(2)	0.986±0.002(5)●	0.986±0.002(5)
satimage MDEP	0.876+0.009(7)	0.871+0.009(6)●	0.873+0.010(7)	0.890+0.011(7)●	0.983+0.004(7)	0.982+0.004(7)
DEP	$0.895 \pm 0.010(2)$	$0.890 \pm 0.011(3)$	$0.893 \pm 0.008(2)$	$0.908 \pm 0.007(3)$	$0.988 \pm 0.002(3)$	0.988+0.002(3)
MMSE _{ster} (ours)	$0.894 \pm 0.011(3)$	$0.892 \pm 0.012(2)$	$0.893 \pm 0.011(3)$	$0.908 \pm 0.009(4)$	$0.989 \pm 0.002(1)$	$0.988 \pm 0.002(1)$
$MMSE_{margin}(ours)$	0.899±0.012(1)	0.894±0.014(1)	0.895±0.009(1)	$0.909 \pm 0.008(1)$	0.988±0.002(2)	0.988±0.002(2)
SMOTE	0.875+0.012(8)	0.864+0.016(8)	0.872+0.013(8)	0.877+0.012(8)	0.021+0.007(8)	0.021+0.007/8)
DINIOIL	0.949±0.008(4)●	0.804±0.008(4)●	0.949+0.008(4)	0.949+0.008(4)	0.998 + 0.001(4)	0.991 ± 0.007(8)
EasyEnsemble	0.949 10.000(4)	$0.740 \pm 0.000(4)$				
EasyEnsemble BalancedBE	$0.020 \pm 0.011(5)$	0.037+0.011(5)	$0.020 \pm 0.011(5)$	$0.030 \pm 0.011(5)$	0.007±0.001(6)●	0.007±0.001(6)
EasyEnsemble BalancedRF SMOTEBacest	0.939±0.011(5)●	0.937±0.011(5)•	0.939±0.011(5)●	0.939±0.011(5)●	0.997±0.001(6)●	$0.997 \pm 0.001(6)$
EasyEnsemble BalancedRF SMOTEBoost MDEP	0.939±0.011(5)● 0.931±0.017(6)●	0.937±0.011(5)● 0.922±0.024(7)●	$0.939 \pm 0.011(5) \bullet$ $0.928 \pm 0.020(7) \bullet$	$0.939 \pm 0.011(5) \bullet$ $0.932 \pm 0.017(6) \bullet$	$0.997 \pm 0.001(6) \bullet$ $0.997 \pm 0.002(5) \bullet$	$0.997 \pm 0.001(6)$ $0.997 \pm 0.002(5)$
EasyEnsemble BalancedRF SMOTEBoost MDEP DEP	$0.939 \pm 0.011(5) \bullet$ $0.931 \pm 0.017(6) \bullet$ $0.930 \pm 0.011(7) \bullet$	$0.937 \pm 0.011(5) \bullet$ $0.922 \pm 0.024(7) \bullet$ $0.928 \pm 0.011(6) \bullet$	$0.939\pm0.011(5)$ • $0.928\pm0.020(7)$ • $0.930\pm0.011(6)$ •	$0.939 \pm 0.011(5) \bullet$ $0.932 \pm 0.017(6) \bullet$ $0.931 \pm 0.011(7) \bullet$	$0.997 \pm 0.001(6) \bullet$ $0.997 \pm 0.002(5) \bullet$ $0.996 \pm 0.002(7) \bullet$	$0.997 \pm 0.001(6)$ $0.997 \pm 0.002(5)$ $0.996 \pm 0.002(7)$
EasyEnsemble BalancedRF SMOTEBoost MDEP DEP	0.939±0.011(5)● 0.931±0.017(6)● 0.930±0.011(7)● 0.963±0.005(1)	$0.937 \pm 0.011(5) \bullet$ $0.922 \pm 0.024(7) \bullet$ $0.928 \pm 0.011(6) \bullet$ $0.962 \pm 0.006(1)$	$0.939 \pm 0.011(5) \bullet$ $0.928 \pm 0.020(7) \bullet$ $0.930 \pm 0.011(6) \bullet$ $0.963 \pm 0.005(3)$	$0.939 \pm 0.011(5) \bullet$ $0.932 \pm 0.017(6) \bullet$ $0.931 \pm 0.011(7) \bullet$ $0.963 \pm 0.005(3)$	$0.997 \pm 0.001(6) \bullet$ $0.997 \pm 0.002(5) \bullet$ $0.996 \pm 0.002(7) \bullet$ $0.999 \pm 0.000(3)$	0.997±0.001(6) 0.997±0.002(5) 0.996±0.002(7) 0.999±0.000(3)
EasyEnsemble BalancedRF SMOTEBoost MDEP DEP MMSE _{class} (ours)	$0.939 \pm 0.011(5) \bullet$ $0.931 \pm 0.017(6) \bullet$ $0.930 \pm 0.011(7) \bullet$ $0.963 \pm 0.005(1)$ $0.959 \pm 0.006(3)$	$\begin{array}{c} 0.937 \pm 0.011(5) \bullet \\ 0.922 \pm 0.024(7) \bullet \\ 0.928 \pm 0.011(6) \bullet \\ 0.962 \pm 0.006(1) \\ 0.958 \pm 0.006(3) \end{array}$	$\begin{array}{c} 0.939 \pm 0.011(5) \bullet \\ 0.928 \pm 0.020(7) \bullet \\ 0.930 \pm 0.011(6) \bullet \\ 0.963 \pm 0.005(3) \\ 0.963 \pm 0.006(2) \end{array}$	$\begin{array}{c} 0.939 \pm 0.011(5) \bullet \\ 0.932 \pm 0.017(6) \bullet \\ 0.931 \pm 0.011(7) \bullet \\ 0.963 \pm 0.005(3) \\ 0.964 \pm 0.006(1) \end{array}$	$\begin{array}{c} 0.997 \pm 0.001(6) \bullet \\ 0.997 \pm 0.002(5) \bullet \\ 0.996 \pm 0.002(7) \bullet \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(2) \end{array}$	$\begin{array}{c} 0.997 \pm 0.001(6) \\ 0.997 \pm 0.002(5) \\ 0.996 \pm 0.002(7) \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(1) \end{array}$
EasyEnsemble BalancedRF SMOTEBoost MDEP DEP MMSE _{class} (ours) MMSE _{margin} (ours)	$\begin{array}{c} 0.939 \pm 0.011(5) \bullet \\ 0.931 \pm 0.017(6) \bullet \\ 0.930 \pm 0.011(7) \bullet \\ 0.963 \pm 0.005(1) \\ 0.959 \pm 0.006(3) \\ 0.962 \pm 0.007(2) \end{array}$	$\begin{array}{c} 0.937 \pm 0.011(5) \bullet \\ 0.922 \pm 0.024(7) \bullet \\ 0.928 \pm 0.011(6) \bullet \\ 0.962 \pm 0.006(1) \\ 0.958 \pm 0.006(3) \\ 0.962 \pm 0.007(2) \end{array}$	$\begin{array}{c} 0.939 \pm 0.011(5) \bullet \\ 0.928 \pm 0.020(7) \bullet \\ 0.930 \pm 0.011(6) \bullet \\ 0.963 \pm 0.005(3) \\ 0.963 \pm 0.006(2) \\ 0.964 \pm 0.006(1) \end{array}$	$\begin{array}{c} 0.939 \pm 0.011(5) \bullet \\ 0.932 \pm 0.017(6) \bullet \\ 0.931 \pm 0.011(7) \bullet \\ 0.963 \pm 0.005(3) \\ \textbf{0.964} \pm 0.006(1) \\ 0.963 \pm 0.006(2) \end{array}$	$\begin{array}{c} 0.997 \pm 0.001(6) \bullet \\ 0.997 \pm 0.002(5) \bullet \\ 0.996 \pm 0.002(7) \bullet \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(2) \\ 0.999 \pm 0.000(1) \end{array}$	$\begin{array}{c} 0.997 \pm 0.001(6) \\ 0.997 \pm 0.002(5) \\ 0.996 \pm 0.002(7) \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(1) \\ 0.999 \pm 0.000(2) \end{array}$
EasyEnsemble BalancedRF SMOTEBoost MDEP DEP MMSE _{class} (ours) MMSE _{margin} (ours) SMOTE	$\begin{array}{l} 0.939 {\pm} 0.011(5) \bullet \\ 0.931 {\pm} 0.017(6) \bullet \\ 0.930 {\pm} 0.017(6) \bullet \\ 0.930 {\pm} 0.011(7) \bullet \\ 0.963 {\pm} 0.005(1) \\ 0.959 {\pm} 0.006(3) \\ 0.962 {\pm} 0.007(2) \\ 0.798 {\pm} 0.012(8) \bullet \end{array}$	$\begin{array}{c} 0.937\pm 0.011(5) \bullet\\ 0.922\pm 0.024(7) \bullet\\ 0.928\pm 0.011(6) \bullet\\ 0.962\pm 0.006(1)\\ 0.958\pm 0.006(3)\\ 0.962\pm 0.007(2)\\ 0.789\pm 0.014(8) \bullet \end{array}$	0.939±0.011(5)• 0.928±0.020(7)• 0.930±0.011(6)• 0.963±0.005(3) 0.963±0.006(2) 0.964±0.006(1) 0.801±0.012(8)•	0.939±0.011(5)• 0.932±0.017(6)• 0.931±0.011(7)• 0.963±0.005(3) 0.964±0.006(1) 0.963±0.006(2) 0.821±0.009(8)•	0.997±0.001(6)• 0.997±0.002(5)• 0.996±0.002(7)• 0.999±0.000(3) 0.999±0.000(2) 0.999±0.000(1) 0.889±0.006(8)•	$\begin{array}{c} 0.990 \pm 0.001(6) \\ 0.997 \pm 0.001(6) \\ 0.997 \pm 0.002(5) \\ 0.996 \pm 0.002(7) \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(1) \\ 0.999 \pm 0.000(2) \\ 0.888 \pm 0.007(8) \end{array}$
EasyEnsemble BalancedRF SMOTEBoost MDEP DEP MMSE _{class} (ours) MMSE _{margin} (ours) SMOTE EasyEnsemble	$\begin{array}{l} 0.939 \pm 0.011(5) \bullet \\ 0.931 \pm 0.017(6) \bullet \\ 0.930 \pm 0.011(7) \bullet \\ 0.930 \pm 0.005(1) \\ 0.959 \pm 0.006(3) \\ 0.962 \pm 0.007(2) \\ 0.798 \pm 0.012(8) \bullet \\ 0.916 \pm 0.006(4) \bullet \end{array}$	$\begin{array}{c} 0.937 \pm 0.011(5) \bullet \\ 0.922 \pm 0.024(7) \bullet \\ 0.928 \pm 0.011(6) \bullet \\ 0.962 \pm 0.006(1) \\ 0.958 \pm 0.006(3) \\ 0.962 \pm 0.007(2) \\ 0.789 \pm 0.014(8) \bullet \\ 0.916 \pm 0.006(4) \bullet \end{array}$	$\begin{array}{c} 0.939 \pm 0.011(5) \bullet \\ 0.928 \pm 0.020(7) \bullet \\ 0.928 \pm 0.020(7) \bullet \\ 0.930 \pm 0.011(6) \bullet \\ 0.963 \pm 0.005(3) \\ 0.963 \pm 0.006(2) \\ 0.964 \pm 0.006(1) \\ 0.801 \pm 0.012(8) \bullet \\ 0.916 \pm 0.005(4) \bullet \end{array}$	$\begin{array}{l} 0.939 \pm 0.011(5) \bullet \\ 0.932 \pm 0.017(6) \bullet \\ 0.931 \pm 0.017(6) \bullet \\ 0.931 \pm 0.005(3) \\ 0.963 \pm 0.005(3) \\ 0.964 \pm 0.006(1) \\ 0.963 \pm 0.006(2) \\ 0.821 \pm 0.009(8) \bullet \\ 0.924 \pm 0.004(4) \bullet \end{array}$	$\begin{array}{c} 0.997 \pm 0.001(6) \bullet \\ 0.997 \pm 0.002(5) \bullet \\ 0.999 \pm 0.002(5) \bullet \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(2) \\ 0.999 \pm 0.000(1) \\ 0.889 \pm 0.006(8) \bullet \\ 0.995 \pm 0.001(4) \bullet \end{array}$	$\begin{array}{c} 0.997 \pm 0.001(6) \\ 0.997 \pm 0.002(5) \\ 0.997 \pm 0.002(7) \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(1) \\ 0.999 \pm 0.000(2) \\ 0.888 \pm 0.007(8) \\ 0.995 \pm 0.001(4) \\ \end{array}$
EasyEnsemble BalancedRF SMOTEBoost MDEP DEP MMSE _{class} (ours) MMSE _{margin} (ours) SMOTE EasyEnsemble BalancedRF	$0.939 \pm 0.011(5) \bullet$ $0.931 \pm 0.017(6) \bullet$ $0.930 \pm 0.011(7) \bullet$ $0.963 \pm 0.005(1)$ $0.959 \pm 0.006(3)$ $0.962 \pm 0.007(2)$ $0.798 \pm 0.012(8) \bullet$ $0.916 \pm 0.006(4) \bullet$ $0.896 \pm 0.009(5) \bullet$	$\begin{array}{c} 0.937 \pm 0.011(5) \bullet \\ 0.922 \pm 0.024(7) \bullet \\ 0.928 \pm 0.011(6) \bullet \\ 0.962 \pm 0.006(1) \\ 0.958 \pm 0.006(3) \\ 0.962 \pm 0.007(2) \\ 0.789 \pm 0.014(8) \bullet \\ 0.916 \pm 0.006(4) \bullet \\ 0.895 \pm 0.010(5) \bullet \end{array}$	$\begin{array}{c} 0.939 \pm 0.011(5) \bullet\\ 0.928 \pm 0.020(7) \bullet\\ 0.928 \pm 0.020(7) \bullet\\ 0.930 \pm 0.011(6) \bullet\\ 0.963 \pm 0.005(3)\\ 0.963 \pm 0.006(2)\\ 0.964 \pm 0.006(4)\\ 0.801 \pm 0.012(8) \bullet\\ 0.916 \pm 0.005(4) \bullet\\ 0.897 \pm 0.008(6) \bullet \end{array}$	$\begin{array}{c} 0.939 \pm 0.011(5) \bullet \\ 0.932 \pm 0.017(6) \bullet \\ 0.931 \pm 0.017(6) \bullet \\ 0.931 \pm 0.005(3) \\ 0.963 \pm 0.005(3) \\ 0.964 \pm 0.006(1) \\ 0.963 \pm 0.006(2) \\ 0.821 \pm 0.009(8) \bullet \\ 0.924 \pm 0.004(4) \bullet \\ 0.907 \pm 0.007(6) \bullet \end{array}$	$\begin{array}{c} 0.997 \pm 0.001(6) \oplus \\ 0.997 \pm 0.002(5) \oplus \\ 0.999 \pm 0.002(7) \oplus \\ 0.999 \pm 0.000(3) \oplus \\ 0.999 \pm 0.000(2) \oplus \\ 0.999 \pm 0.000(1) \oplus \\ 0.889 \pm 0.006(8) \oplus \\ 0.995 \pm 0.001(4) \oplus \\ 0.992 \pm 0.001(6) \oplus \\ \end{array}$	$\begin{array}{c} 0.997 \pm 0.001(6) \\ 0.997 \pm 0.002(5) \\ 0.996 \pm 0.002(7) \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(2) \\ 0.888 \pm 0.007(8) \\ 0.995 \pm 0.001(4) \\ 0.991 \pm 0.001(6) \\ \end{array}$
EasyEnsemble BalancedRF SMOTEBoost MDEP DEP MMSE _{class} (ours) MMSE _{margin} (ours) SMOTE EasyEnsemble BalancedRF SMOTEBoost	$0.939\pm0.011(5)$ $0.931\pm0.017(6)$ $0.930\pm0.011(7)$ $0.930\pm0.011(7)$ $0.959\pm0.006(3)$ $0.962\pm0.007(2)$ $0.798\pm0.012(8)$ $0.916\pm0.006(4)$ $0.896\pm0.009(5)$ $0.893\pm0.008(6)$	$0.937 \pm 0.011(5) \bullet$ $0.922 \pm 0.024(7) \bullet$ $0.928 \pm 0.011(6) \bullet$ $0.962 \pm 0.006(3)$ $0.962 \pm 0.007(2)$ $0.789 \pm 0.014(8) \bullet$ $0.916 \pm 0.006(4) \bullet$ $0.885 \pm 0.010(5) \bullet$ $0.887 \pm 0.008(6) \bullet$	$\begin{array}{c} 0.939 \pm 0.011(5) \bullet \\ 0.928 \pm 0.020(7) \bullet \\ 0.930 \pm 0.011(6) \bullet \\ 0.963 \pm 0.005(3) \\ 0.963 \pm 0.006(2) \\ 0.964 \pm 0.006(1) \\ 0.801 \pm 0.012(8) \bullet \\ 0.916 \pm 0.005(4) \bullet \\ 0.897 \pm 0.008(6) \bullet \\ 0.899 \pm 0.007(5) \bullet \end{array}$	$\begin{array}{l} 0.939 \pm 0.011(5) \bullet \\ 0.932 \pm 0.017(6) \bullet \\ 0.931 \pm 0.017(6) \bullet \\ 0.931 \pm 0.005(3) \\ 0.964 \pm 0.006(1) \\ 0.963 \pm 0.006(2) \\ 0.821 \pm 0.009(8) \bullet \\ 0.924 \pm 0.004(4) \bullet \\ 0.907 \pm 0.007(6) \bullet \\ 0.910 \pm 0.006(5) \bullet \end{array}$	$\begin{array}{c} 0.997 \pm 0.001(6) \bullet \\ 0.997 \pm 0.002(5) \bullet \\ 0.996 \pm 0.002(7) \bullet \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(2) \\ 0.999 \pm 0.000(1) \\ 0.899 \pm 0.000(6) \bullet \\ 0.995 \pm 0.001(4) \bullet \\ 0.992 \pm 0.001(6) \bullet \\ 0.992 \pm 0.001(6) \bullet \\ 0.993 \pm 0.001(5) \bullet \end{array}$	0.997±0.001(6) 0.997±0.002(5) 0.999±0.002(5) 0.999±0.000(3) 0.999±0.000(3) 0.999±0.000(1) 0.999±0.000(2) 0.888±0.007(8) 0.995±0.001(4) 0.991±0.001(6) 0.992±0.001(5)
eendigits EasyEnsemble BalancedRF SMOTEBoost MDEP DEP MMSE _{class} (ours) MMSE _{margin} (ours) SMOTE EasyEnsemble BalancedRF SMOTEBoost MDEP	0.939±0.011(5)• 0.931±0.017(6)• 0.930±0.011(7)• 0.963±0.005(1) 0.962±0.007(2) 0.798±0.012(8)• 0.916±0.006(4)• 0.893±0.008(6)• 0.887±0.014(7)•	$0.937 \pm 0.011(5) \bullet$ $0.922 \pm 0.024(7) \bullet$ $0.928 \pm 0.011(6) \bullet$ $0.928 \pm 0.006(1)$ $0.958 \pm 0.006(3)$ $0.962 \pm 0.007(2)$ $0.789 \pm 0.014(8) \bullet$ $0.895 \pm 0.010(5) \bullet$ $0.887 \pm 0.008(6) \bullet$ $0.884 \pm 0.015(7) \bullet$	$\begin{array}{c} 0.939 \pm 0.011(5) \bullet\\ 0.939 \pm 0.020(7) \bullet\\ 0.928 \pm 0.020(7) \bullet\\ 0.930 \pm 0.011(6) \bullet\\ 0.963 \pm 0.005(3)\\ 0.963 \pm 0.006(2)\\ 0.964 \pm 0.006(1)\\ 0.801 \pm 0.012(8) \bullet\\ 0.916 \pm 0.005(4) \bullet\\ 0.899 \pm 0.007(5) \bullet\\ 0.889 \pm 0.015(7) \bullet\\ \end{array}$	$\begin{array}{l} 0.939 \pm 0.011(5) \bullet\\ 0.932 \pm 0.017(6) \bullet\\ 0.931 \pm 0.017(6) \bullet\\ 0.931 \pm 0.005(3)\\ 0.963 \pm 0.005(3)\\ 0.964 \pm 0.006(2)\\ 0.821 \pm 0.009(8) \bullet\\ 0.924 \pm 0.004(4) \bullet\\ 0.907 \pm 0.007(6) \bullet\\ 0.910 \pm 0.006(5) \bullet\\ 0.900 \pm 0.014(7) \bullet\\ \end{array}$	$\begin{array}{c} 0.997 \pm 0.001(6) \bullet \\ 0.997 \pm 0.002(5) \bullet \\ 0.996 \pm 0.002(7) \bullet \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(2) \\ 0.999 \pm 0.000(1) \\ 0.889 \pm 0.006(8) \bullet \\ 0.993 \pm 0.001(4) \bullet \\ 0.993 \pm 0.001(5) \bullet \\ 0.989 \pm 0.005(7) \bullet \\ \end{array}$	0.997±0.001(6) 0.997±0.002(5) 0.996±0.002(7) 0.999±0.000(3) 0.999±0.000(2) 0.898±0.001(2) 0.888±0.007(8) 0.995±0.001(4) 0.995±0.001(4) 0.992±0.001(5) 0.988±0.005(7)
usps EasyEnsemble BalancedRF SMOTEBoost MDEP DEP MMSE _{class} (ours) MMSE _{margin} (ours) SMOTE EasyEnsemble BalancedRF SMOTEBoost MDEP DEP	$0.939\pm0.011(5)$ $0.931\pm0.017(6)$ $0.931\pm0.017(6)$ $0.930\pm0.011(7)$ $0.963\pm0.005(1)$ $0.959\pm0.006(3)$ $0.962\pm0.007(2)$ $0.798\pm0.012(8)$ $0.916\pm0.006(4)$ $0.896\pm0.009(5)$ $0.895\pm0.018(6)$ $0.887\pm0.014(7)$ $0.887\pm0.016(7)$	$0.937 \pm 0.011(5) \bullet$ $0.922 \pm 0.024(7) \bullet$ $0.928 \pm 0.011(6) \bullet$ $0.928 \pm 0.006(1)$ $0.958 \pm 0.006(3)$ $0.962 \pm 0.007(2)$ $0.789 \pm 0.014(8) \bullet$ $0.916 \pm 0.006(4) \bullet$ $0.885 \pm 0.010(5) \bullet$ $0.884 \pm 0.015(7) \bullet$ $0.920 \pm 0.007(1)$	$\begin{array}{c} 0.939 \pm 0.011(5) \bullet\\ 0.939 \pm 0.020(7) \bullet\\ 0.928 \pm 0.020(7) \bullet\\ 0.930 \pm 0.011(6) \bullet\\ 0.963 \pm 0.005(3)\\ 0.963 \pm 0.006(2)\\ 0.964 \pm 0.006(4)\\ 0.801 \pm 0.012(8) \bullet\\ 0.916 \pm 0.005(4) \bullet\\ 0.897 \pm 0.008(6) \bullet\\ 0.889 \pm 0.015(7) \bullet\\ 0.824 \pm 0.006(7) \bullet\\ 0.924 \pm 0.006(7) \bullet\\ \end{array}$	$\begin{array}{l} 0.939 \pm 0.011(5) \bullet \\ 0.932 \pm 0.017(6) \bullet \\ 0.931 \pm 0.017(6) \bullet \\ 0.931 \pm 0.017(7) \bullet \\ 0.963 \pm 0.005(3) \bullet \\ 0.963 \pm 0.006(2) \bullet \\ 0.963 \pm 0.006(2) \bullet \\ 0.924 \pm 0.004(4) \bullet \\ 0.907 \pm 0.007(6) \bullet \\ 0.900 \pm 0.014(7) \bullet \\ 0.901 \pm 0.005(2) \bullet \\ 0.911 \pm 0.005(2) \bullet \\ 0.$	$\begin{array}{c} 0.997 \pm 0.001(6) \bullet \\ 0.997 \pm 0.002(5) \bullet \\ 0.996 \pm 0.002(7) \bullet \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(2) \\ 0.999 \pm 0.000(2) \\ 0.999 \pm 0.000(4) \\ 0.889 \pm 0.006(8) \bullet \\ 0.995 \pm 0.001(4) \bullet \\ 0.993 \pm 0.001(5) \bullet \\ 0.989 \pm 0.005(7) \bullet \\ 0.998 \pm 0.001(3) \\ 0.996 \pm 0.0$	0.997±0.001(6) 0.997±0.002(5) 0.996±0.002(7) 0.999±0.000(3) 0.999±0.000(2) 0.888±0.007(8) 0.999±0.001(4) 0.991±0.001(6) 0.988±0.005(7) 0.988±0.005(7) 0.989±0.001(5) 0.989±0.001(5)
EasyEnsemble BalancedRF SMOTEBoost MDEP DEP MMSE _{class} (ours) MMSE _{margin} (ours) SMOTE EasyEnsemble BalancedRF SMOTEBoost MDEP DEP MMSE _{class} (ours)	$0.939\pm0.011(5)$ $0.931\pm0.017(6)$ $0.931\pm0.017(6)$ $0.930\pm0.011(7)$ $0.963\pm0.006(3)$ $0.959\pm0.006(3)$ $0.962\pm0.007(2)$ $0.798\pm0.012(8)$ $0.916\pm0.006(4)$ $0.896\pm0.009(5)$ $0.893\pm0.008(6)$ $0.887\pm0.014(7)$ $0.921\pm0.008(1)$ $0.921\pm0.008(1)$	$0.937 \pm 0.011(5) \bullet$ $0.922 \pm 0.024(7) \bullet$ $0.928 \pm 0.011(6) \bullet$ $0.962 \pm 0.006(1)$ $0.962 \pm 0.006(2)$ $0.952 \pm 0.007(2)$ $0.789 \pm 0.014(8) \bullet$ $0.895 \pm 0.010(5) \bullet$ $0.887 \pm 0.008(6) \bullet$ $0.884 \pm 0.015(7) \bullet$ $0.920 \pm 0.007(2)$	$\begin{array}{c} 0.939 \pm 0.011(5) \bullet\\ 0.928 \pm 0.020(7) \bullet\\ 0.928 \pm 0.020(7) \bullet\\ 0.930 \pm 0.011(6) \bullet\\ 0.963 \pm 0.005(3)\\ 0.963 \pm 0.006(2)\\ 0.964 \pm 0.006(4)\\ 0.801 \pm 0.012(8) \bullet\\ 0.916 \pm 0.005(4) \bullet\\ 0.897 \pm 0.008(6) \bullet\\ 0.899 \pm 0.015(7) \bullet\\ 0.899 \pm 0.015(7) \bullet\\ 0.924 \pm 0.006(2)\\ 0.926 \pm 0.007(3) \bullet\\ 0.926 \pm$	$\begin{array}{l} 0.939\pm0.011(5) \\ 0.932\pm0.017(6) \\ 0.932\pm0.017(6) \\ 0.931\pm0.017(6) \\ 0.931\pm0.005(3) \\ 0.963\pm0.005(3) \\ 0.963\pm0.006(2) \\ 0.821\pm0.009(8) \\ 0.924\pm0.004(4) \\ 0.907\pm0.007(6) \\ 0.910\pm0.006(5) \\ 0.900\pm0.014(7) \\ 0.931\pm0.005(2) \\ 0.934\pm0.006(1) \\ \end{array}$	$\begin{array}{c} 0.997 \pm 0.001(6) \oplus \\ 0.997 \pm 0.002(5) \oplus \\ 0.996 \pm 0.002(7) \oplus \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(2) \\ 0.999 \pm 0.000(2) \\ 0.999 \pm 0.000(4) \oplus \\ 0.995 \pm 0.001(4) \oplus \\ 0.993 \pm 0.001(5) \oplus \\ 0.993 \pm 0.001(5) \oplus \\ 0.999 \pm 0.005(7) \oplus \\ 0.996 \pm 0.001(3) \\ 0.996 \pm 0$	0.997±0.001(6)(0.997±0.002(5)(0.996±0.002(7)(0.999±0.000(3)(0.999±0.000(3)(0.999±0.000(2)(0.888±0.007(8)(0.995±0.001(4)(0.991±0.001(6)(0.992±0.001(5)(0.995±0.001(3)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)
EasyEnsemble BalancedRF SMOTEBoost MDEP DEP MMSE _{class} (ours) MMSE _{margin} (ours) SMOTE EasyEnsemble BalancedRF SMOTEBoost MDEP DEP MMSE _{class} (ours) MMSE (ours)	$0.939\pm0.011(5)$ $0.931\pm0.017(6)$ $0.931\pm0.017(6)$ $0.963\pm0.005(1)$ $0.959\pm0.006(3)$ $0.952\pm0.007(2)$ $0.798\pm0.012(8)$ $0.916\pm0.006(4)$ $0.896\pm0.008(6)$ $0.893\pm0.008(6)$ $0.893\pm0.008(6)$ $0.892\pm0.004(7)$ $0.922\pm0.006(1)$ $0.920\pm0.007(3)$	$0.937 \pm 0.011(5) \oplus$ $0.922 \pm 0.024(7) \oplus$ $0.928 \pm 0.011(6) \oplus$ $0.962 \pm 0.006(1)$ $0.962 \pm 0.006(3)$ $0.962 \pm 0.007(2)$ $0.789 \pm 0.014(8) \oplus$ $0.916 \pm 0.006(4) \oplus$ $0.887 \pm 0.010(5) \oplus$ $0.884 \pm 0.015(7) \oplus$ $0.920 \pm 0.007(1)$ $0.920 \pm 0.008(3)$	$\begin{array}{l} 0.939 \pm 0.011(5) \bullet\\ 0.939 \pm 0.020(7) \bullet\\ 0.930 \pm 0.011(6) \bullet\\ 0.963 \pm 0.005(3)\\ 0.963 \pm 0.006(2)\\ 0.964 \pm 0.006(1)\\ 0.916 \pm 0.005(4) \bullet\\ 0.916 \pm 0.005(4) \bullet\\ 0.897 \pm 0.008(6) \bullet\\ 0.899 \pm 0.007(5) \bullet\\ 0.889 \pm 0.015(7) \bullet\\ 0.924 \pm 0.006(2)\\ 0.924 \pm 0.007(3)\\ \end{array}$	$\begin{array}{l} 0.939 \pm 0.011(5) \\ 0.939 \pm 0.011(5) \\ 0.932 \pm 0.017(6) \\ 0.931 \pm 0.011(7) \\ 0.963 \pm 0.005(3) \\ 0.963 \pm 0.006(1) \\ 0.963 \pm 0.006(1) \\ 0.924 \pm 0.004(4) \\ 0.907 \pm 0.007(6) \\ 0.901 \pm 0.007(6) \\ 0.900 \pm 0.014(7) \\ 0.931 \pm 0.005(2) \\ 0.931 \pm 0.007(3) \\ \end{array}$	$\begin{array}{c} 0.997 \pm 0.001(6) \bullet \\ 0.997 \pm 0.002(5) \bullet \\ 0.996 \pm 0.002(7) \bullet \\ 0.999 \pm 0.000(3) \\ 0.999 \pm 0.000(2) \\ 0.999 \pm 0.000(2) \\ 0.999 \pm 0.000(1) \\ 0.999 \pm 0.000(1) \\ 0.995 \pm 0.001(4) \bullet \\ 0.992 \pm 0.001(6) \bullet \\ 0.992 \pm 0.001(5) \bullet \\ 0.993 \pm 0.001(5) \bullet \\ 0.998 \pm 0.005(7) \bullet \\ 0.996 \pm 0.001(3) \\ 0.996 \pm 0.001(2) \\ 0.996 \pm 0$	0.997±0.001(6) 0.997±0.002(5) 0.996±0.002(7) 0.999±0.000(3) 0.999±0.000(1) 0.999±0.000(2) 0.999±0.000(2) 0.999±0.001(3) 0.991±0.001(6) 0.992±0.001(3) 0.995±0.001(3)

Table 4: Experimental results on benchmark datasets of common performance measures (continued). The results are shown in mean \pm std.(rank) of 10 times of running. The smaller the rank, the better the performance. The best accuracy is highlighted in bold type. An entry is marked with a bullet '•' if the method is significantly worse than MMSE_{class} or MMSE_{margin} based on the Wilcoxon rank-sum test with confidence level 0.1.

Dataset	Method	avg. acc	G-mean	F1-macro	F1-micro	macro-AUC	MAUC
letter	SMOTE	0.769±0.006(8)●	0.761±0.007(8)●	0.768±0.006(8)●	0.769±0.006(8)●	0.880±0.003(8)●	0.880±0.003(8)●
	EasyEnsemble	0.836±0.007(5)●	0.834±0.007(5)●	0.838±0.006(5)●	0.837±0.007(5)●	0.993±0.001(4)●	0.993±0.001(4)●
	BalancedRF	0.804±0.006(7)●	0.801±0.007(7)●	0.806±0.006(7)●	0.805±0.006(7)●	0.983±0.001(6)●	0.983±0.001(6)●
	SMOTEBoost	0.875±0.006(4)●	0.866±0.007(4)●	0.873±0.006(4)●	0.875±0.006(4)●	0.990±0.001(5)●	0.990±0.001(5)
	MDEP	$0.810 \pm 0.058(6) \bullet$	0.802±0.058(6)●	0.809±0.056(6)●	0.810±0.057(6)●	0.978±0.020(7)●	0.978±0.020(7)
	DEP	0.892±0.005(3)	0.885±0.006(3)	$0.891 \pm 0.005(3) \bullet$	0.893±0.005(3)	0.996±0.001(1)	0.996±0.001(1)
	$MMSE_{class}(ours)$	0.892±0.004(2)	0.887±0.003(2)	0.892±0.002(2)	0.894±0.003(2)	0.996±0.001(3)	0.996±0.001(3)
	$\mathrm{MMSE}_{\mathrm{margin}}(\mathrm{ours})$	0.894±0.002(1)	0.888±0.002(1)	0.893±0.003(1)	0.895±0.003(1)	0.996±0.000(2)	0.996±0.000(2)
	SMOTE	0.934±0.009(7)●	0.929±0.010(7)●	0.932±0.009(7)●	0.934±0.009(7)●	0.961±0.005(8)●	0.961±0.005(8)
	EasyEnsemble	0.953±0.009(4)●	0.952±0.010(4)●	0.953±0.009(4)●	0.953±0.009(4)●	$0.997 \pm 0.001(4) \bullet$	0.997±0.001(4)
	BalancedRF	0.931±0.008(8)●	0.927±0.009(8)●	0.930±0.008(8)●	0.931±0.008(8)●	0.994±0.002(7)●	0.994±0.002(7)
commont	SMOTEBoost	$0.949 \pm 0.007(5) \bullet$	0.945±0.009(5)●	0.948±0.008(5)●	0.949±0.007(5)●	$0.996 \pm 0.001(5) \bullet$	0.996±0.001(5)
segment	MDEP	0.942±0.012(6)●	0.939±0.013(6)●	0.942±0.012(6)●	0.942±0.012(6)●	0.995±0.002(6)●	0.995±0.002(6)
	DEP	0.959±0.009(2)	0.957±0.010(2)	0.959±0.009(3)	0.959±0.009(2)	0.997±0.001(3)	0.997±0.001(3)
	$MMSE_{class}(ours)$	0.957±0.009(3)	0.955±0.010(3)	0.959±0.009(2)	0.959±0.008(3)	0.997±0.001(2)	0.997±0.001(2)
	$\mathrm{MMSE}_{\mathrm{margin}}(\mathrm{ours})$	0.960±0.008(1)	0.958±0.009(1)	0.959±0.008(1)	0.961±0.010(1)	0.998±0.001(1)	0.998±0.001(1)
	SMOTE	0.904±0.007(7)●	0.903±0.007(7)●	0.890±0.008(7)●	0.926±0.006(6)●	0.939±0.004(8)●	0.936±0.004(8)
	EasyEnsemble	0.943±0.004(5)●	0.942±0.004(5)●	0.893±0.005(6)●	0.923±0.003(7)●	0.996±0.000(4)●	0.995±0.001(4)
	BalancedRF	0.943±0.006(4)●	0.943±0.006(4)●	0.914±0.005(4)●	0.939±0.004(5)●	0.995±0.001(5)●	0.995±0.001(5)
acoustic	SMOTEBoost	0.893±0.010(8)●	0.889±0.011(8)●	$0.910 \pm 0.009(5) \bullet$	0.945±0.005(4)●	0.995±0.001(6)●	0.994±0.001(6)
acoustic	MDEP	0.924±0.009(6)●	0.924±0.010(6)●	0.889±0.011(8)●	0.923±0.010(8)●	0.990±0.003(7)●	0.990±0.003(7)
	DEP	0.947±0.007(2)	0.947±0.007(2)	0.922±0.007(3)●	0.946±0.005(3)●	0.996±0.000(3)●	0.995±0.000(3)
	$MMSE_{class}(ours)$	0.948±0.005(1)	0.947±0.005(1)	0.932±0.005(1)	0.954±0.003(1)	0.996±0.000(1)	0.996±0.000(1)
	$\mathrm{MMSE}_{\mathrm{margin}}(\mathrm{ours})$	0.947±0.003(3)	0.947±0.003(3)	0.926±0.008(2)	0.949±0.006(2)	0.996±0.000(2)	0.996±0.000(2)
	SMOTE	0.583±0.033(8)●	0.548±0.043(8)●	0.566±0.031(8)●	0.836±0.009(7)●	0.781±0.017(8)●	0.768±0.018(8)
	EasyEnsemble	0.791±0.025(4)●	0.773±0.034(3)	0.722±0.024(4)●	0.876±0.007(5)●	0.990±0.002(3)●	0.978±0.005(2)
DNA	BalancedRF	0.702±0.027(5)●	0.672±0.031(5)●	0.649±0.028(6)●	0.852±0.010(6)●	0.974±0.003(6)●	0.946±0.006(6)
	SMOTEBoost	0.658±0.025(6)●	0.583±0.039(7)●	0.693±0.024(5)●	0.901±0.007(1)	0.988±0.002(5)●	0.967±0.005(5)
mininA	MDEP	0.638±0.051(7)●	0.599±0.056(6)●	0.593±0.051(7)●	0.834±0.032(8)●	0.958±0.019(7)●	0.924±0.020(7)
	DEP	0.797±0.026(3)	0.771±0.037(4)	0.745±0.030(2)	0.888±0.009(3)●	0.989±0.002(4)●	0.977±0.005(4)
	$MMSE_{class}(ours)$	$0.804 \pm 0.014(1)$	0.787±0.016(1)	0.747±0.025(1)	0.894±0.007(2)	0.991±0.002(1)	0.979±0.004(1)
	MARCE ()		1	1	a see the second		

Figure 3: The result of the Friedman-Nemenyi test of the compared methods on different performance measures. The dots indicate the average ranks. The bars indicate the critical difference with the Nemenyi test at significance level 0.1, and compared methods having non-overlapped bars are significantly different.

In summary, our methods select different solutions based on the decisionmaker's preferred criterion, and achieve better results than the compared methods. This quantitatively demonstrates that our method provides highly competitive choices.

573 5.2.2. Scenario II

574

In Scenario II, the decision-maker may choose any solution on the Pareto front presented to her. So in order to demonstrate the effectiveness of our approach, we need to show that we can provide decision-makers with diverse and good choices.

For ease of presentation, we select three out of six compared methods, 579 namely DEP, EasyEnsemble, and SMOTEBoost. These three methods are 580 better because they are not significantly inferior to our methods. We com-581 pare the solution sets generated by our methods with the single solution 582 generated by each of the three selected methods separately. We take the 583 acoustic dataset as an example and show the classifiers' validation accuracy 584 for each class in Figure 4. The solutions in red dominate the compared classi-585 fier, which means they perform better than the compared classifier in all the 586 classes. The solutions in orange are incomparable with the compared classi-587 fier, which means they perform better than the compared classifier in at least 588 one class. In other words, all solutions of our methods shown in Figure 4 580 have their advantages. And we can observe that these solutions are also very 590 diverse. This shows that our method can provide the decision-maker with 591 rich choices, and these choices are no worse than the best three compared 592 methods. 593

 $_{594}$ If we compare the performance of $MMSE_{class}$ and $MMSE_{margin}$ more care-

⁵⁹⁵ fully, we can observe that the performance of $MMSE_{class}$ is more widely spread ⁵⁹⁶ in each class, which clearly reflects the waxing and waning relationship be-⁵⁹⁷ tween the performance of each class. In contrast, the solution distribution of ⁵⁹⁸ MMSE_{margin} on each class has a relatively consistent trend. This is because ⁵⁹⁹ MMSE_{margin} does not directly optimize the accuracy of each class. But even ⁶⁰⁰ so, it still provides many different trade-offs.

Figure 5 and Figure 6 show the performance of MMSE_{class} and MMSE_{margin} respectively on the rest datasets. We can see that both MMSE_{class} and MMSE_{margin} obtain diverse and highly competitive solutions on all the datasets.

Figure 4: The solutions generated by $\text{MMSE}_{\text{class}}$ and $\text{MMSE}_{\text{margin}}$ compared with the single classifier generated by DEP, EasyEnsemble, and SMOTEBoost on *acoustic* dataset. The red solutions dominate the compared classifier, and the orange solutions are incomparable with the compared classifier.

Figure 5: The solutions generated by $\text{MMSE}_{\text{class}}$ compared with the single classifier generated by DEP, EasyEnsemble, and SMOTEBoost on the other nine datasets. The red solutions dominate the compared classifier, and the orange solutions are incomparable with the compared classifier.

Figure 6: The solutions generated by $MMSE_{margin}$ compared with the single classifier generated by DEP, EasyEnsemble, and SMOTEBoost on the other nine datasets. The red solutions dominate the compared classifier, and the orange solutions are incomparable with the compared classifier.

Figure 7: Running time comparison.

604 5.3. Running time comparison

In this subsection, we compare the running time of different methods. The 605 running time of our methods $\text{MMSE}_{\text{class}}$ and $\text{MMSE}_{\text{margin}}$ include training of 606 base learners, multi-objective evolutionary optimization, and the evaluation 607 of the obtained solution set on all the performance measures. Because our 608 methods need to show the decision-maker the performance of all the obtained 609 solutions in all the classes and different evaluation criteria, it is fair to include 610 this part of the time. The running time of the compared methods includes 611 the hyper-parameter tuning and the evaluation of the obtained single model 612 on all the performance measures. As we can observe in Figure 7, the running 613 time of $MMSE_{class}$ and $MMSE_{margin}$ is comparable with EasyEnsemble and 614 SMOTEBoost, the running time of MDEP is roughly the same, while DEP 615 has even longer running time. That is to say, our methods successfully obtain 616 diverse highly competitive solutions efficiently. 617

618 5.4. Effectiveness of optimizing margins

MMSE_{margin} is a novel design of objective modeling proposed to reduce 619 the number of objectives. In Section 4, we proved that optimizing label-wise 620 margin can optimize Average Accuracy, G-mean, macro-F1, micro-F1, and 621 optimizing the instance-wise margin can optimize macro-AUC and MAUC. 622 Therefore, in this subsection, we experimentally verify it. We choose the 623 letter dataset, which has a large number of classes that can best demon-624 strate the advantages of $MMSE_{margin}$. We record the objective values and 625 performance measures of all solutions generated during the multi-objective 626 optimization process. Figure 8 verifies the positive correlation between op-627 timizing the label-wise margin and Average Accuracy, G-mean, macro-F1, 628

Figure 8: The relationship between the optimization objective and the performance measure that can be optimized in theory. The points are all the solutions generated during the multi-objective evolutionary optimization of applying $MMSE_{margin}$ on the *letter* dataset.

micro-F1, and the positive correlation between optimizing the instance-wise margin and macro-AUC and MAUC through two-dimensional scatter plots and the linear fit lines. The slopes of the fitted lines vary greatly because the solutions have different ranges of values on different performance measures, but all slopes are positive, indicating a positive correlation. The key point to note is that the R^2 values in each subplot are good, as an R^2 value close to 1 indicates a good fit.

636 6. Conclusion

In this paper, we revisit the multi-class imbalance problem from the perspective of multi-objective optimization. Instead of using a predefined rebalancing strategy and generating a single model, we propose the MMSE framework to generate a set of ensembles with the best possible trade-offs between classes. In real-world applications where it is difficult to choose between different trade-off strategies *a priori*, the decision-maker will be in a better position to make the final choice if the optimal trade-offs are given. Specifically, we propose $MMSE_{class}$ and $MMSE_{margin}$. The latter enjoys a theoretical guarantee. And experimental results verify that both $MMSE_{class}$ and $MMSE_{margin}$ can obtain diverse and highly competitive solutions within an acceptable running time.

Currently, we are dealing with class imbalance problems where there is a relative lack of samples in the small classes. An interesting future work is to explore how to use the small class information more effectively when the small class samples are extremely scarce. Another interesting direction for future work is to design specific optimization algorithms for this combinatorial multi-objective optimization problem.

654 Acknowledgments

This work was supported by the National Science Foundation of China (62276124,62306104). The authors would like to thank Professor Bin Liang and student Wei Wang for providing an acoustic model that generates the acoustic data set.

659 References

- [1] Ahmed, R., Mir, F., Banerjee, S., 2017. A review on energy harvesting
 approaches for renewable energies from ambient vibrations and acoustic
 waves using piezoelectricity. Smart Materials and Structures 26, 085031.
- ⁶⁶³ [2] Buchbinder, N., Feldman, M., Naor, J., Schwartz, R., 2014. Submodular
 ⁶⁶⁴ maximization with cardinality constraints, in: Proceedings of the 25th
 ⁶⁶⁵ Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1433–1452.
- [3] Chang, C.C., Lin, C.J., 2011. LIBSVM: A library for support vector
 machines. ACM Transactions on Intelligent Systems and Technology 2,
 1–27.
- [4] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002.
 Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357.

- ⁶⁷² [5] Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W., 2003. Smote⁶⁷³ boost: Improving prediction of the minority class in boosting, in: Pro⁶⁷⁴ ceedings of the 7th European Conference on Principles of Data Mining
 ⁶⁷⁵ and Knowledge Discovery, pp. 107–119.
- [6] Chen, C., Liaw, A., Breiman, L., et al., 2004. Using random forest to learn imbalanced data. University of California, Berkeley 110, 24.
- [7] Das, A., Kempe, D., 2011. Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection, in: Proceedings of the 28th International Conference on Machine Learning, pp. 1057–1064.
- [8] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and
 elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions
 on Evolutionary Computation 6, 182–197.
- [9] Du, H., Zhang, Y., Zhang, L., Chen, Y.C., 2023. Selective ensemble
 learning algorithm for imbalanced dataset. Computer Science and In formation Systems, 23–23.
- [10] Estabrooks, A., Jo, T., Japkowicz, N., 2004. A multiple resampling
 method for learning from imbalanced data sets. Computational Intelli gence 20, 18–36.
- [11] Fernandes, E.R., de Carvalho, A.C., Yao, X., 2019. Ensemble of classifiers based on multiobjective genetic sampling for imbalanced data.
 IEEE Transactions on Knowledge and Data Engineering 32, 1104–1115.
- [12] Friedrich, T., Göbel, A., Neumann, F., Quinzan, F., Rothenberger, R.,
 2019. Greedy maximization of functions with bounded curvature under partition matroid constraints, in: Proceedings of the 33rd AAAI
 Conference on Artificial Intelligence, pp. 2272–2279.
- [13] Guo, Y., Zhang, C., 2021. Recent advances in large margin learning.
 IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 700 7167–7174.
- [14] Hand, D.J., Till, R.J., 2001. A simple generalisation of the area under the roc curve for multiple class classification problems. Machine
 Learning 45, 171–186.

- [15] Hastie, T., Rosset, S., Zhu, J., Zou, H., 2009. Multi-class adaboost.
 Statistics and its Interface 2, 349–360.
- [16] He, H., Bai, Y., Garcia, E.A., Li, S., 2008. Adasyn: Adaptive synthetic sampling approach for imbalanced learning, in: Proceedings of International Joint Conference on Neural Networks, pp. 1322–1328.
- [17] He, H., Garcia, E.A., 2009. Learning from imbalanced data. IEEE
 Transactions on Knowledge and Data Engineering 21, 1263–1284.
- [18] He, H., Ma, Y., 2013. Imbalanced Learning: Foundations, Algorithms,
 and Applications. John Wiley & Sons.
- [19] He, Y.X., Wu, Y.C., Qian, C., Zhou, Z.H., 2024. Margin distribution
 and structural diversity guided ensemble pruning. Machine Learning
 doi:10.1007/s10994-023-06429-3.
- [20] Inselberg, A., Dimsdale, B., 1990. Parallel coordinates: a tool for visualizing multi-dimensional geometry, in: Proceedings of the 1st IEEE
 conference on visualizatio, pp. 361–378.
- [21] Krause, A., Singh, A.P., Guestrin, C., 2008. Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical
 studies. Journal of Machine Learning Research 9, 235–284.
- [22] Krawczyk, B., Galar, M., Jeleń, L., Herrera, F., 2016. Evolutionary
 undersampling boosting for imbalanced classification of breast cancer
 malignancy. Applied Soft Computing 38, 714–726.
- [23] Liang, J., Zhang, Y., Chen, K., Qu, B., Yu, K., Yue, C., Suganthan,
 P.N., 2024. An evolutionary multiobjective method based on dominance
 and decomposition for feature selection in classification. Science China
 Information Sciences 67, 120101.
- [24] Liu, X.Y., Li, Q.Q., Zhou, Z.H., 2013. Learning imbalanced multi-class
 data with optimal dichotomy weights, in: Proceedings of the 13th IEEE
 International Conference on Data Mining, pp. 478–487.
- [25] Liu, X.Y., Wu, J., Zhou, Z.H., 2009. Exploratory undersampling for
 class-imbalance learning. IEEE Transactions on Systems, Man, and
 Cybernetics, Part B (Cybernetics) 2, 539–550.

- [26] Liu, X.Y., Zhou, Z.H., 2006. The influence of class imbalance on costsensitive learning: An empirical study, in: Proceedings of the 6th IEEE
 International Conference on Data Mining, pp. 970–974.
- [27] Lyu, S.H., Yang, L., Zhou, Z.H., 2019. A refined margin distribution
 analysis for forest representation learning, in: Advances in Neural Information Processing Systems 32, pp. 5531–5541.
- [28] Pillai, M.A., Deenadayalan, E., 2014. A review of acoustic energy harvesting. International Journal of Precision Engineering and Manufacturing 15, 949–965.
- [29] Prajapati, A., Parashar, A., Rathee, A., 2023. Multi-dimensional
 information-driven many-objective software remodularization approach.
 Frontiers of Computer Science 17, 173209.
- [30] Qian, C., Shi, J.C., Yu, Y., Tang, K., Zhou, Z.H., 2017. Subset selection
 under noise, in: Advances in Neural Information Processing Systems 30,
 pp. 3563–3573.
- [31] Qian, C., Yu, Y., Zhou, Z.H., 2015. Subset selection by pareto optimization, in: Advances in Neural Information Processing Systems 28, pp. 1765–1773.
- [32] Roshan, S.E., Asadi, S., 2020. Improvement of bagging performance for classification of imbalanced datasets using evolutionary multi-objective optimization. Engineering Applications of Artificial Intelligence 87, 103319.
- [33] Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A., 2009.
 RUSBoost: A hybrid approach to alleviating class imbalance. IEEE
 Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 40, 185–197.
- [34] Shen, C., Xie, Y., Li, J., Cummer, S.A., Jing, Y., 2018. Acoustic
 metacages for sound shielding with steady air flow. Journal of Applied
 Physics 123, 124501.
- [35] Wang, S., Yao, X., 2012. Multiclass imbalance problems: Analysis and
 potential solutions. IEEE Transactions on Systems, Man, and Cyber netics, Part B (Cybernetics) 42, 1119–1130.

- [36] Wu, X.Z., Zhou, Z.H., 2017. A unified view of multi-label performance
 measures, in: Proceedings of the 34th International Conference on Ma chine Learning, pp. 3780–3788.
- [37] Wu, Y.C., He, Y.X., Qian, C., Zhou, Z.H., 2022. Multi-objective evolutionary ensemble pruning guided by margin distribution, in: Proceedings of the 17th International Conference on Parallel Problem Solving from Nature, pp. 427–441.
- [38] Xu, Y., Yu, Z., Chen, C.P., 2024. Classifier ensemble based on multiview optimization for high-dimensional imbalanced data classification. IEEE
 Transactions on Neural Networks and Learning Systems 31, 870–883.
- [39] Xue, Y., Cai, X., Neri, F., 2022. A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification. Applied Soft Computing 127, 109420.
- [40] Xue, Y., Tang, Y., Xu, X., Liang, J., Neri, F., 2021. Multi-objective feature selection with missing data in classification. IEEE Transactions on Emerging Topics in Computational Intelligence 6, 355–364.
- [41] Yang, K., Yu, Z., Chen, C.P., Cao, W., Wong, H.S., You, J., Han, G.,
 2021. Progressive hybrid classifier ensemble for imbalanced data. IEEE
 Transactions on Systems, Man, and Cybernetics: Systems 52, 2464–2478.
- [42] Yang, K., Yu, Z., Chen, C.P., Cao, W., You, J., Wong, H.S., 2022.
 Incremental weighted ensemble broad learning system for imbalanced data. IEEE Transactions on Knowledge and Data Engineering 34, 5809–5824.
- [43] Yang, K., Yu, Z., Wen, X., Cao, W., Chen, C.P., Wong, H.S., You, J.,
 2020. Hybrid classifier ensemble for imbalanced data. IEEE transactions
 on neural networks and learning systems 31, 1387–1400.
- [44] Yang, P., Zhang, L., Liu, H., Li, G., 2024. Reducing idleness in financial cloud services via multi-objective evolutionary reinforcement learning based load balancer. Science China Information Sciences 67, 120102.

- [45] Yokoi, A., Matsuzaki, J., Yamamoto, Y., Yoneoka, Y., Takahashi, K.,
 Shimizu, H., Uehara, T., Ishikawa, M., Ikeda, S.i., Sonoda, T., et al.,
 2018. Integrated extracellular microRNA profiling for ovarian cancer
 screening. Nature Communications 9, 1–10.
- [46] Zhang, C., Xue, Y., Neri, F., Cai, X., Slowik, A., 2024. Multi-objective self-adaptive particle swarm optimization for large-scale feature selection in classification. International journal of neural systems, 2450014–2450014.
- [47] Zhen, L., Li, M., Peng, D., Yao, X., 2020. Objective reduction for
 visualising many-objective solution sets. Information Sciences 512, 278–
 294.
- [48] Zhou, Z.H., 2012. Ensemble Methods: Foundations and Algorithms.
 Chapman & Hall/CRC, Boca Raton, FL.
- [49] Zhou, Z.H., 2022. Open-environment machine learning. National Science
 Review 9, nwac123. doi:10.1093/nsr/nwac123.
- ⁸¹³ [50] Zhou, Z.H., Yu, Y., Qian, C., 2019. Evolutionary Learning: Advances
 ⁸¹⁴ in Theories and Algorithms. Springer, Singapore.

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: