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Abstract—Multi-Label Contrastive Learning (MLCL) seeks to 
pull samples with shared labels closer in an embedding space. 
However, existing methods primarily adjust attractive forces 
without explicitly shaping a geometric structure that captures 
complex label semantics. This work targets learning an 
embedding space isomorphic to the semantic label structure, a 
challenge complicated by ranking noise arising from dense 
positives and sampling distortion caused by finite queue sizes. To 
address these problems, we propose Hierarchical Boundary 
Learning (HBL), a novel structured regularization loss. HBL 
partitions positive samples into soft and hard subsets based on 
Jaccard similarity, then enforces a dual-boundary constraint: a 
relative boundary between soft and hard positives to mitigate 
ranking noise, and an absolute boundary to anchor hard positives, 
preventing positive sample expulsion. A reliability gating 
mechanism further counters sampling distortion. Experiments on 
diverse multi-label datasets show that MLCL methods using 
HBL achieve significant improvements over prior methods across 
multiple evaluation metrics.  
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I.  INTRODUCTION 
Contrastive learning [1, 2] has become a cornerstone of 

representation learning, excelling in single-label scenarios by 
pulling similar samples together and pushing dissimilar ones 
apart. However, when directly extended to the more general 
and challenging multi-label setting [3], its simple binary logic 
encounters a fundamental challenge. This is because, in a 
multi-label context, the relationship between two samples is not 
strictly binary; they can share a subset of labels, creating a 
continuous, non-binary degree of similarity [3]. This partial 
similarity renders the traditional contrastive objective 
ambiguous. Therefore, the central task of Multi-Label 
Contrastive Learning (MLCL) [4] is to learn an embedding 
space that faithfully captures this rich, structured semantic 
similarity. 

To address this challenge, recent MLCL methods [4-6] 
primarily focus on modulating the attractive forces between 
anchors and positive samples—either by decomposing the loss 
or weighting positives based on label overlap. However, these 
approaches share a critical limitation: they emphasize how to 
pull but overlook how to arrange. That is, they fail to address a 
deeper geometric optimization question—how to safely and 

robustly organize positive samples in the embedding space 
under these complex attractive forces. As a result, the learned 
geometry often remains flat and unstructured. Worse still, naive 
attempts to impose internal ordering may backfire: in trying to 
separate closely and distantly related positives, the model may 
inadvertently repel the weaker positives too far, even beyond 
negatives. This contradicts the core goal of contrastive learning 
and degrades representational quality. 

We posit that an ideal multi-label representation space 
should possess an intrinsic manifold structure isomorphic to the 
semantic structure of the label space. This implies that, beyond 
merely attracting all positive samples, our objective is to sculpt 
a geometric structure that reflects their varying semantic 
distances within a safe and consistent framework. However, 
translating this ideal into practice requires navigating a series of 
interconnected challenges rooted in the characteristics of real-
world data. We identify three core problems: (1) ranking noise, 
which arises from the need to differentiate subtle semantic 
differences; (2) positive sample expulsion, a more perilous risk 
caused by improper optimization constraints; and (3) sampling 
distortion, introduced by finite queue sizes, which further 
exacerbates the former two issues. 

Therefore, we propose a novel and adaptive structured 
regularization loss, termed Hierarchical Boundary Learning 
(HBL). At its core lies a dual-boundary constraint mechanism: 
a relative boundary that sculpts the embedding structure at a 
macroscopic level to suppress ranking noise, and an absolute 
boundary that anchors positive samples to prevent positive 
sample expulsion. To ensure this mechanism remains stable 
under the statistical uncertainty introduced by sampling 
distortion, HBL further incorporates a third key component—a 
reliability gate. This gate evaluates the reliability of the 
sampled batch and activates the structured loss only when the 
signal is sufficiently stable, thereby enhancing the overall 
robustness of the learning process. 

Our main contributions are manifold: We not only propose 
the robust HBL method, with its dual-boundary constraint and 
reliability gate, but more importantly, we systematically 
identify, define, and address the three core challenges of 
ranking noise, positive sample expulsion, and sampling 
distortion when introducing structured information into MLCL. 
Experimental results on multiple multi-label datasets validate 
the effectiveness of our approach. 



II. RELATED WORK 
Multi-Label Learning (MLL) aims to associate a single 

sample with multiple relevant labels [3]. Traditional methods 
mainly focus on label transformation and model adaptation, 
establishing the foundational methodology for multi-label 
learning [7-9]. However, they are limited in capturing label 
dependencies, lack end-to-end optimization capabilities, and 
often result in suboptimal feature representations. In recent 
years, deep learning-based methods have made notable 
progress by incorporating structures such as attention 
mechanisms or graph neural networks to explicitly model label 
co-occurrence in the label space [10, 11]. However, these 
approaches mainly focus on structural modeling in the output 
space or impose explicit graph constraints, making it difficult 
to capture latent high-order semantic relationships among 
labels within the representation space. 

In contrast, contrastive learning has achieved remarkable 
breakthroughs in the field of representation learning [1, 2, 12-
18]. By constructing effective positive and negative sample 
pairs and enforcing similarity-based constraints, it significantly 
enhances the semantic discriminability of the representation 
space. This line of success has also inspired recent efforts to 
integrate contrastive learning into multi-label learning. A key 
challenge in MLCL is how to define positive and negative 
samples, as label relationships are not simply binary or 
mutually exclusive. At the same time, effectively representing 
such complex relationships in the embedding space remains a 
critical problem. Current approaches [4-6, 19-21] primarily 
address the challenges of partial similarity and label structure 
modeling in multi-label contrastive learning through strategies 
such as loss function decomposition, positive sample 
reweighting, or predefined label hierarchies. However, these 
methods predominantly focus on the attractive forces between 
anchors and positive samples, overlooking a deeper geometric 
optimization problem: under such complex pulling dynamics, 
how should positive samples ultimately be arranged in the 
embedding space in a safe and robust manner? To this end, we 
propose Hierarchical Boundary Learning (HBL). 

III. METHOD 
This chapter systematically presents our method. We begin 

by reviewing MulSupCon [4] and introducing our central 
motivation: learning a representation space that is semantically 
isomorphic to the label space. Building on this foundation, we 
explore three core challenges that arise in practice. First, we 
examine two fundamental geometric issues—ranking noise and 
positive sample expulsion—followed by the statistical 
challenge that amplifies them: sampling distortion. We then 
introduce our key contribution: the adaptive HBL method. We 
show how its dual-boundary constraint mechanism addresses 
the two geometric challenges, and how the integrated reliability 
gate effectively mitigates sampling distortion, ensuring robust 
and reliable learning. 

A. Preliminaries: Multi-Label Supervised Contrastiv 
Learning 
For a given anchor sample with its label set , 

MulSupCon [4] decomposes its learning objective across each  

of the labels it possesses, . Ultimately, the loss for 
anchor  is: 

 , (1) 

where  represents the sample's embedding,  is the set of 
positive samples sharing label with anchor ,  is the 
full set of all samples, and  is the temperature 
hyperparameter that balances the model’s ability to distinguish 
between positive and negative sample. Although this method 
is effective, its strategy of indiscriminately attracting all 
samples that share a common label ignores the rich, non-
binary semantic similarities inherent in multi-label scenarios. 
This results in a learned geometric structure of the embedding 
space that is flat. More importantly, any naive attempt to 
impose an internal ordering directly upon this foundation risks 
the over-expulsion of some positive samples, which in turn 
undermines the very foundation of contrastive learning. 

B. Motivation: From Similarity Aggregation to Geometric 
Manifold Sculpting 
The core motivation for our work stems from the manifold 

hypothesis [22]. We posit that an ideal multi-label 
representation space should not merely aggregate similar 
samples but should arrange them on a manifold whose 
geometric structure is isomorphic to the semantic structure of 
the labels. The key to achieving this goal lies in preserving the 
ordinal relations among samples. Traditional contrastive 
learning [1, 2] typically employs cosine similarity on L2-
normalized embeddings, confining the geometric space to a 
unit hypersphere. This metric primarily focuses on vector 
direction, with the ultimate goal of collapsing all positive 
samples to a single point on the sphere. This fundamentally 
conflicts with our objective of sculpting a local manifold with 
hierarchical and distance-based gradients, as it cannot express 
notions of proximity and distance. Fortunately, when feature 
vectors are L2-normalized onto a unit hypersphere, a strictly 
monotonic relationship exists between Euclidean distance and 
cosine similarity. For two unit vectors  and , their squared 
Euclidean distance  and cosine similarity  
satisfy: 

 . (2) 

Equation (2) explicitly demonstrates that minimizing 
Euclidean distance is equivalent to maximizing cosine 
similarity. This crucial mathematical equivalence allows us to 
have the best of both worlds: we can leverage the training 
stability of modern contrastive learning frameworks operating 
on the unit hypersphere, while indirectly yet precisely 
controlling the Euclidean distances between samples by 
optimizing their cosine similarity. This lays a solid theoretical 
and practical foundation for our proposed Hierarchical 
Boundary Learning. 



 

TABLE I.  STATISTICS OF POSITIVE SAMPLES PER ANCHOR ACROSS VARIOUS DATASETS (COMPUTED OVER THE ENTIRE TRAINING SET). THE UNDERSAMPLING 
RATE IS DEFINED AS THE RATIO OF THE AVERAGE NUMBER OF POSITIVES TO OUR FIXED QUEUE SIZE (4096). 

Dataset Min Positives Max Positives Mean Positives Std Dev Undersampling Rate Complexity Profile 
Scene 165 630 232.4 66.7 0.06 Moderate density, complete structure 

Yeast 215 1481 1174.6 282.0 0.29 High density, complete structure 

PASCAL 97 3194 1222.2 943.7 0.30 High density, complete structure 

MIRFLICKR 792 19202 10977.8 3299.5 2.68 Extreme density, undersampled 

C. From Ideal to Reality: The Threefold Challenge in 
Practice 
In translating the ideal of learning a semantically 

isomorphic space into practice, we identify three 
interconnected and escalating challenges through an in-depth 
analysis of multi-label datasets (as shown in Table Ⅰ). 

1) Ranking Noise from Positive Crowding: The first 
challenge arises from the crowding phenomenon within the 
positive sample space. In these highly dense local regions, 
differences in label similarity among many positive samples 
become extremely subtle (e.g., 0.31 vs. 0.32). When the model 
is forced to distinguish such minute differences—which are 
likely attributable to statistical noise—and to generate 
gradients accordingly, a phenomenon we refer to as ranking 
noise emerges. As the model attempts to satisfy a multitude of 
low signal-to-noise ratio ranking constraints, its learning 
dynamics become disrupted, potentially compromising the 
acquisition of more meaningful macroscopic class-level 
separability in favor of preserving inconsequential local 
orderings. 

2) The Fundamental Risk of Positive Sample Expulsion: 
However, circumventing ranking noise via macroscopic 
partitioning (e.g., categorizing positives as strong or weak) 
introduces a deeper systemic challenge: positive sample 
expulsion. In separating strong from weak positives in the 
embedding space, the model may resort to pushing weak 
positives away from the anchor. If left unconstrained, this 
expulsive force risks driving true positives beyond their 
intended attractive region—sometimes even farther than 
relevant negatives—thereby compromising the 
representational consistency central to contrastive learning. 

3) Sampling Distortion as a Risk Multiplier: Finally, these 
geometric risks are further exacerbated by sampling distortion. 
As shown by the undersampling rate in Table Ⅰ, large datasets 
like MIRFLICKR (rate = 2.68) suffer from severely biased 
and sparse sampling, where the queue fails to capture most 
positives. In contrast, smaller datasets (e.g., Scene, Yeast) 
remain adequately covered (rate < 1). This distortion amplifies 
earlier risks and can trigger catastrophic positive expulsion 
from a single poor mini-batch. 

D. The Solution: HBL 
To systematically address the three aforementioned 

challenges, we propose Hierarchical Boundary Learning (HBL). 
The core of HBL is the introduction of a novel composite 
structural loss. This loss function, through its three key internal  

Figure 1.  The failure of fixed thresholds across datasets with diverse Jaccard 
distributions. Violin plots show the Jaccard similarity densities of positive 

pairs in Yeast and Scene. A global fixed threshold (red dashed line) poorly fits 
both: it's too high for Yeast—missing most data—and too low for Scene—

failing to separate clusters. This underscores the need for an adaptive strategy 
like our dynamic median threshold. 

components, precisely and separately resolves the problems of 
ranking noise, positive sample expulsion, and sampling 
distortion. 

1) Countering Ranking Noise via Macroscopic 
Partitioning: To circumvent ranking noise, our first step is to 
perform a macroscopic, rather than microscopic, partitioning. 
The key to this partitioning is establishing a robust division 
threshold. A seemingly straightforward solution is to use a 
fixed threshold based on global statistics. However, as 
illustrated in Fig. 1, this "one-size-fits-all" strategy proves 
fundamentally ineffective when applied across different 
datasets. Moreover, during training, we are dealing with 
dynamic and localized data distributions. To address this, we 
adopt a dynamic median-thresholding strategy, which 
intelligently determines a tailored boundary for each anchor’s 
local neighborhood. For each anchor  and its set of positive 
samples  within the current queue, this strategy 
dynamically computes the median of the local Jaccard 
similarity distribution and uses it as the anchor's own tailored 
division boundary, : 

,  (3) 

where Jaccard similarity is . This 

adaptive strategy tailors the most reasonable boundary 



between strong and weak relationships for each anchor. Based 
on this, we partition the positive samples into: 

a) Soft Positive Set ( ): All positive samples 
satisfying . 

b) Hard Positive Set ( ): All positive samples 
satisfying . 

2) Countering Ranking Noise and Positive Sample 
Expulsion via a Dual-Boundary Constraint: After performing 
the macroscopic partitioning, we design a dual-boundary 
constraint mechanism to simultaneously address the two core 
geometric challenges. We operate in the L2-normalized 
embedding space and use cosine similarity to indirectly 
control Euclidean distance. 

a) Relative Boundary Loss ( ): This constraint acts 
directly upon the macroscopic partitions, requiring the group 
of soft positives to be closer to the anchor than the group of 
hard positives. Specifically, it mandates that the most similar 
hard positive (the one with the highest similarity) must still 
have a lower similarity to the anchor than the least similar soft 
positive (the one with the lowest similarity). This group-wise 
constraint fundamentally avoids microscopic ranking of 
individual samples, thereby resolving the ranking noise 
problem. 

 . (4) 

b) Absolute Boundary Loss ( ): To provide a 
safety net for our structural adjustments, we introduce an 
absolute boundary loss. It ensures that even the most distantly 
related hard positive maintains a higher similarity to the 
anchor than the most relevant negative sample (the hard 
negative). This anchoring operation, by establishing an 
inviolable bottom line, fundamentally resolves the risk of 
positive sample expulsion. 

 , (5) 

where  and  represent the margins of the two 
boundaries in (4) and (5), respectively, and  is the set of 
negative samples for anchor . 

3) Countering Sampling Distortion via a Reliability Gate: 
The effectiveness of this sophisticated geometric constraint 
mechanism depends entirely on the reliability of the statistical 
signal. However, as revealed in our analysis of the datasets 
(Table Ⅰ), the sampling distortion caused by the finite queue 
can produce biased and unstable statistics (such as the median), 
severely disrupting the learning process. Therefore, to counter 
the statistical challenge of sampling distortion, the third key 
component of HBL is a reliability gate. This gate ensures that 

the dual-boundary loss is activated only when the statistics are 
reliable—that is, when the total number of positive samples 
for an anchor , , exceeds a preset threshold . 

, (6) 

where  balance the relative force of hierarchical shaping and 
the anchoring force that prevents expulsion. This conditional 
strategy ensures that the model is not misled by noise 
introduced from distorted samples, thereby guaranteeing the 
robustness of the entire method. 

4) Final Objective Function: Finally, our HBL loss serves 
as an auxiliary structural term, integrated with a base 
contrastive loss  (such as MulSupCon). For a mini-batch 
of size , the total loss is: 

 ,  (7) 

where  balances the indiscriminate aggregating force 
provided by the basic contrastive loss and the internal 
structure shaping force imposed by the HBL loss. 

IV. EXPERIMENTS 
In this section, we validate the effectiveness of our 

proposed HBL method through a series of extensive 
experiments. We aim to answer the following core research 
questions (RQs):  

 RQ1: Does HBL achieve significant performance 
improvements over an existing SOTA method? 

 RQ2: Is each carefully designed component of 
HBL—adaptive partitioning, the dual-boundary 
constraint, and the reliability gate—indispensable? 

 RQ3: How sensitive is our method to its key 
hyperparameters? 

A. Experimental Setup 
1) Datasets: To comprehensively evaluate the 

performance and generalization capability of our method, we 
select four widely-used benchmark datasets with diverse 
characteristics and scales: Scene [7], Yeast [23], MIRFLICKR 
[24], and PASCAL-VOC [25]. These datasets cover a diverse 
range of scenarios, from bioinformatics and scene images to 
large-scale web images. 

2) Evaluation Protocol and Principle of Fair Comparison: 
We follow the standard evaluation protocol in the fields of 
self-supervised and contrastive learning, employing linear 
probing to measure the quality of the pretrained 
representations. After the pretraining stage is complete, we 
freeze all parameters of the backbone encoder and train only a 
simple linear classifier on top of it. We choose linear probing 
over full-network fine-tuning because it provides a purer 
measure of the representation's intrinsic quality, rather than the 
network's fine-tuning capability on downstream tasks. This 



TABLE II.  MAIN RESULTS ON FOUR BENCHMARK DATASETS. THE BEST PERFORMANCE FOR EACH METRIC WITHIN EACH BASELINE COMPARISON GROUP (E.G., 
ANY-LOSS VS. ANY-LOSS+HBL) IS HIGHLIGHTED IN BOLD. THE UPWARD ARROW (↑) INDICATES THAT HIGHER IS BETTER FOR ALL METRICS. 

Dataset Method p@1 ↑ mAP ↑ HA ↑ ebF1 ↑ maF1 ↑ miF1 ↑ 

Scene 
MulSupCon 0.7935  0.8401  0.9213  0.7821  0.7810  0.7764  

MulSupCon+HBL 0.8069  0.8459  0.9221  0.7860  0.7876  0.7821  

Yeast 
MulSupCon 0.7415  0.4916  0.8000  0.6574  0.4780  0.6664  

MulSupCon+HBL 0.7557  0.4944  0.8032  0.6579  0.4803  0.6677  

PASCAL-VOC 
MulSupCon 0.6662  0.5325  0.9453  0.5631  0.5136  0.5850  

MulSupCon+HBL 0.6749  0.5398  0.9449  0.5709  0.5156  0.5868  

MIRFLICKR 
MulSupCon 0.8363  0.6035  0.9032  0.6406  0.5645  0.6689  

MulSupCon+HBL 0.8379  0.6106  0.9033  0.6420  0.5713  0.6705  

Scene 
Any-Loss 0.7993  0.8440  0.9232  0.7859  0.7767  0.7732  

Any-Loss+HBL 0.8094  0.8478  0.9213  0.7865  0.7832  0.7790  

Yeast 
Any-Loss 0.7535  0.4767  0.7950  0.6365  0.4645  0.6495  

Any-Loss+HBL 0.7688  0.4792  0.7995  0.6465  0.4661  0.6536  

PASCAL-VOC 
Any-Loss 0.6268  0.4974  0.9414  0.5326  0.4730  0.5530  

Any-Loss+HBL 0.6581  0.5048  0.9433  0.5511  0.4917  0.5728  

MIRFLICKR 
Any-Loss 0.8326  0.5624  0.8981  0.6244  0.5240  0.6475  

Any-Loss+HBL 0.8310  0.5654  0.8984  0.6225  0.5254  0.6494  

aligns with the standard evaluation paradigm in the 
contemporary contrastive learning literature. 

3) Evaluation Metrics: To comprehensively evaluate the 
performance of our multi-label classification model, we adopt 
six standard metrics: mean average precision (mAP), 
precision@1 (p@1), macro-F1 (maF1), micro-F1 (miF1), 
example-based F1 (ebF1), and Hamming Accuracy (HA). 
These metrics jointly assess ranking quality (mAP, p@1), 
label-level performance (mi/ma-F1), instance-level accuracy 
(ebF1), and overall prediction consistency (HA). 

4) Implementation Details: Our method is implemented as 
an auxiliary structural loss built upon MulSupCon [4] and a 
SupCon [12] variant, Any-Loss. We use a simple multi-layer 
perceptron as the backbone for the Yeast and Scene datasets, 
and ResNet-50 [26] for PASCAL-VOC and MIRFLICKR. 
The embedding dimension is fixed at 128 for all models. 
Optimization is performed using the AdamW [27] optimizer 
with a CosineAnnealingWarmRestarts [28] learning rate 
scheduler. The feature queue size is set to 4096. To ensure fair 
comparison and optimal performance, we apply Optuna [29] 
for automated hyperparameter optimization. The search space 
includes: temperature , momentum update rate 

, learning rate and weight decay 
sampled log-uniformly from  and 

, respectively; scheduler cycle length 
 (log-scaled integers), and batch size from 

. For our proposed HBL method, we 
additionally tune: structural loss weight 

, internal 

balancing factor , relative 
boundary margin , absolute boundary 
margin , and reliability gate threshold 

. 

B. Performance Comparison (RQ1) 
We integrate HBL into two representative and 

evolutionarily related methods: Any-Loss and MulSupCon. 
The former is a direct extension of SupCon to multi-label 
learning, embodying a basic strategy of indiscriminate 
aggregation. The latter adopts a decomposed aggregation 
mechanism and represents the current SOTA in MLCL. This 
focused comparative setup is designed to answer two key 
questions: (1) Can HBL significantly enhance the performance 
of a foundational method? (2) Can HBL still provide 
meaningful improvements when applied to an existing SOTA 
method? By answering both questions affirmatively, we 
demonstrate that the geometric structure sculpting philosophy 
introduced by HBL marks a substantial advance over existing 
aggregation-based approaches and offers a promising direction 
for achieving better performance. To ensure absolute fairness 
in our comparison, we strictly adhere to the principle of 
freezing the baseline's optimal configuration and tuning only 
the parameters of the newly added module. We first reproduce 
the baseline performance. Then, building upon its optimal 
configuration, we keep all shared parameters strictly identical 
and exclusively tune the hyperparameters introduced by our 
HBL method. 

As shown in Table Ⅱ , our proposed HBL consistently 
brings significant performance improvements across all  



 

TABLE III.  ABLATION STUDY OF HBL COMPONENTS ON PASCAL-VOC. 

Method p@1 ↑ mAP ↑ HA ↑ ebF1 ↑ maF1 ↑ miF1 ↑ 

Any-Loss 0.6268 0.4974 0.9414 0.5326 0.4730 0.5530 

w/  0.6351  0.4667  0.9403  0.5226  0.4652  0.5462  

w/o Gate 0.6492  0.4987  0.9430  0.5500  0.4895  0.5677  

w/all 0.6581  0.5048  0.9433  0.5511  0.4917  0.5728  

baseline methods and datasets: (1) Enhancing a simple 
baseline: Any-Loss+HBL substantially outperforms the 
original Any-Loss, demonstrating that incorporating structural 
information is effective even on top of the most basic 
aggregation strategy. (2) Further boosting a SOTA method: 
MulSupCon+HBL surpasses the original MulSupCon on 
multiple metrics across all datasets, with particularly notable 
gains on more challenging datasets like PASCAL and 
MIRFLICKR. This highlights that the geometric structure 
modeling provided by HBL complements existing methods 
and offers a critical advantage that is otherwise missing from 
current SOTA approaches. 

C. Ablation Study (RQ2) 
To investigate the contribution of each design component 

in HBL and better understand its underlying mechanisms, we 
conduct a series of ablation studies on the PASCAL-VOC 
dataset using Any-Loss as the base model. We sequentially 
evaluate the following four configurations: (1) Any-Loss: 
Serves as our performance baseline. (2) w/ : Adds only 
our relative boundary loss on top of the baseline, designed to 
counteract ranking noise. (3) w/o Gate: Extends configuration 
(2) by incorporating the absolute boundary loss, while 
omitting the reliability gate. (4) w/all: Our full HBL method, 
incorporating all components.  

The results, presented in Table Ⅲ, clearly illustrate the 
distinct and complementary contributions of each component. 
Adding only the relative boundary loss  causes a notable 
drop in mAP (from 0.4974 to 0.4667), confirming the positive 
sample expulsion risk—without a stabilizing force, hard 
positives may be overly pushed away, disrupting the 
representation space. Introducing the absolute boundary loss 

 immediately reverses this degradation, lifting mAP to 
0.4987. This validates  as a necessary safety anchor that 
enables effective structural shaping by . Finally, 
incorporating the reliability gate yields further gains (mAP 
0.5048), underscoring its role in mitigating sampling distortion 
and stabilizing training. In summary, the ablation study 
demonstrates that the three key components of HBL play 
complementary roles in addressing ranking noise, positive 
sample expulsion, and sampling distortion. Together, they 
form the core mechanism of HBL as a structured 
regularization term, providing effective structural 
enhancement for MLCL methods. 

D. Parameter Sensitivity Analysis (RQ3) 
To evaluate the robustness of HBL and analyze the roles of 

its key hyperparameters, we conduct a sensitivity analysis on  

Figure 2.  Hyperparameter sensitivity analysis of HBL on the Scene dataset. 
We investigate the impact of the structural loss weight and the internal 

balance factor on the mAP performance. The x-axis for  is plotted on a 
logarithmic scale. Both parameters show a clear optimal range, demonstrating 

the robustness of our method. 

the structural loss weight  and the internal balance factor  
on the Scene dataset, using mAP as the primary metric. This 
analysis reveals the following: 
 Impact of  (Fig. 2, left): The performance exhibits 

a non-monotonic trend with a clear optimal range. 
Increasing  from 0.001 to 0.01 improves mAP from 
0.8403 to 0.8461, validating the effectiveness of the 
structured regularization. Further increases in  lead 
to performance degradation, indicating that 
excessively strong local constraints can disrupt the 
global representations learned by the base contrastive 
loss. 

 Impact of  (Fig. 2, right):  governs the trade-off 
between the relative and absolute losses, regulating 
the balance between structure sculpting and 
representation stability. As  increases from 0.5 to 
0.8, mAP steadily rises to 0.8459. However, a further 
increase to 1.5 degrades performance, suggesting that 
excessive anchoring may limit modeling of intra-class 
structure. The performance rebound at  
suggests the presence of a suboptimal equilibrium. 

In summary, these experiments validate HBL’s design 
philosophy: through coordinated tuning of  and , HBL 
effectively balances global and local learning objectives, as 
well as sculpting and stability of representations. 

V. CONCLUSIONS 
This work tackles a core challenge in multi-label 

contrastive learning: moving from simple similarity 
aggregation to precise geometric manifold sculpting. We 
identify three key challenges—ranking noise, positive sample 
expulsion, and sampling distortion—that hinder fine-grained 
structure learning. To address these, we propose Hierarchical 
Boundary Learning (HBL), a novel composite structural loss 
designed to augment existing contrastive losses. HBL uses 
dual-boundary constraints to distinguish soft and hard positives 
and anchor hard positives, combined with adaptive semantic 
partitioning and reliability gating to combat sampling distortion 
and ensure robustness. Experiments on four datasets show that 
HBL consistently improves performance when integrated with 
leading methods. Ablations and sensitivity analyses confirm 



the necessity of each component and the importance of 
balancing global representation and local structure. 

In summary, HBL provides an effective method and 
validated design principles for robust geometric structure 
learning in multi-label contrastive learning. Future work will 
focus on scaling, efficiency, and handling complex noise to 
further enhance generalization and robustness. 
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